Loading...
Thumbnail Image
Item

GCN-Sem at SemEval-2019 Task 1: Semantic Parsing using Graph Convolutional and Recurrent Neural Networks

Taslimipoor, Shiva
Rohanian, Omid
Može, Sara
Alternative
Abstract
This paper describes the system submitted to the SemEval 2019 shared task 1 ‘Cross-lingual Semantic Parsing with UCCA’. We rely on the semantic dependency parse trees provided in the shared task which are converted from the original UCCA files and model the task as tagging. The aim is to predict the graph structure of the output along with the types of relations among the nodes. Our proposed neural architecture is composed of Graph Convolution and BiLSTM components. The layers of the system share their weights while predicting dependency links and semantic labels. The system is applied to the CONLLU format of the input data and is best suited for semantic dependency parsing.
Citation
Taslimipoor, S., Rohanian, O. and Može, S. (2019) GCN-Sem at SemEval-2019 Task 1: Semantic Parsing using Graph Convolutional and Recurrent Neural Networks, Proceedings of the 13th International Workshop on Semantic Evaluation. Minneapolis, Minnesota, USA: Association for Computational Linguistics, pp. 102–106.
Journal
Research Unit
DOI
PubMed ID
PubMed Central ID
Embedded videos
Type
Conference contribution
Language
en
Description
Series/Report no.
ISSN
EISSN
ISBN
ISMN
Gov't Doc #
Sponsors
Rights
Research Projects
Organizational Units
Journal Issue
Embedded videos