Fugu, MBEllaby, RJO'Connor, HMPitak, MBKlooster, WHorton, PNColes, SJAl-Mashhadani, MHPerepichka, IFBrechin, EKJones, Leigh2020-01-232020-01-232019-06-04Fugu, M. B., Ellaby, R. J., O'Connor, H. M., Pitak, M. B., Klooster, W., Horton, P. N., Coles, S. J., Al-Mashhadani, M. H., Brechin, E. K., Perepichka, I. and Jones, L. F. (2019) Mono- and ditopic hydroxamate ligands towards discrete and extended network architectures, Dalton Transactions, no. 27, pp. , 10180–10190. https://doi.org/10.1039/C9DT01531K1477-92263118783010.1039/c9dt01531khttp://hdl.handle.net/2436/623017© 2019 The Royal Society of Chemistry. A family of mono- and ditopic hydroxamic acids has been employed in the synthesis and structural and physical characterisation of discrete (0D) and (1- and 2-D) extended network coordination complexes. Examples of the latter include the 1-D coordination polymer {[Zn(ii)(L3H)2]·2MeOH}n (5; L3H2 = 2-(methylamino)phenylhydroxamic acid) and the 2-D extended network {[Cu(ii)(L2H)(H2O)(NO3)]·H2O}n (5; L2H2 = 4-amino-2-(acetoxy)phenylhydroxamic acid). The 12-MC-4 metallacrown [Cu(ii)5(L4H)4(MeOH)2(NO3)2]·3H2O·4MeOH (7) represents the first metal complex constructed using the novel ligand N-hydroxy-2-[(2-hydroxy-3-methoxybenzyl)amino]benzamide (L4H3). Variable temperature magnetic susceptibility studies confirm strong antiferromagnetic exchange between the Cu(ii) centres in 7. Coordination polymer 5 shows photoluminescence in the blue region (λPL ∼ 421-450 nm) with a bathochromic shift of the emission (∼15-30 nm) from solution to the solid state.application/pdfenMono- and ditopic hydroxamate ligands towards discrete and extended network architecturesJournal article1477-9234Dalton Transactions2020-01-22