Loading...
Thumbnail Image
Item

Turkish music generation using deep learning

Aydıngün, Anıl
Bağdatlıoğlu, Denizcan
Canbaz, Burak
Kökbıyık, Abdullah
Yavuz, M Furkan
Bölücü, Necva
Can, Burcu
Alternative
Abstract
Bu çalı¸smada derin ögrenme ile Türkçe ¸sarkı bes- ˘ teleme üzerine yeni bir model tanıtılmaktadır. ¸Sarkı sözlerinin Tekrarlı Sinir Agları kullanan bir dil modeliyle otomatik olarak ˘ olu¸sturuldugu, melodiyi meydana getiren notaların da benzer ˘ ¸sekilde nöral dil modeliyle olu¸sturuldugu ve sözler ile melodinin ˘ bütünle¸stirilerek ¸sarkı sentezlemenin gerçekle¸stirildigi bu çalı¸sma ˘ Türkçe ¸sarkı besteleme için yapılan ilk çalı¸smadır. In this work, a new model is introduced for Turkish song generation using deep learning. It will be the first work on Turkish song generation that makes use of Recurrent Neural Networks to generate the lyrics automatically along with a language model, where the melody is also generated by a neural language model analogously, and then the singing synthesis is performed by combining the lyrics with the melody. It will be the first work on Turkish song generation.
Citation
Aydıngün, A., Bağdatlıoğlu, D., Canbaz, B., Kökbıyık, A., Yavuz, M.F., Bölücü, N. and Can, B. (in press) Turkish music generation using deep learning, 28th IEEE 13th Signal Processing and Communications Applications Conference (SIU), 5th-7th October, 2020, Online.
Publisher
Journal
Research Unit
PubMed ID
PubMed Central ID
Embedded videos
Type
Conference contribution
Language
other
Description
This is an accepted manuscript of an article published by IEEE in 28th IEEE Conference on Signal Processing and Communications Applications (SIU), available online at: https://ieeexplore.ieee.org/document/9302283 The accepted version of the publication may differ from the final published version.
Series/Report no.
ISSN
2165-0608
EISSN
ISBN
ISMN
Gov't Doc #
Sponsors
Rights
Research Projects
Organizational Units
Journal Issue
Embedded videos