Loading...
Thumbnail Image
Item

The effects of sinomenine on intestinal absorption of paeoniflorin by the everted rat gut sac model.

Chan, Kelvin C.
Liu, Zhong Qiu
Jiang, Zhi-Hong
Zhou, Hua
Wong, Yuen Fan
Xu, Hong-Xi
Liu, Liang
Alternative
Abstract
Paeoniflorin and sinomenine, derived from the root of Paeonia lactiflora Pall. (family Ranunculaceae) and the stem of Sinomenium acutum Rehder & Wilson (family Menispermaceae), respectively, have been, and are currently, widely used for treatment of rheumatic and arthritic diseases in China and Japan. Our previous studies demonstrated that sinomenine could significantly improve the bioavailability of paeoniflorin in rats, but the underlying mechanisms remain unknown. The present study aims to investigate the intestinal kinetic absorptive characteristics of paeoniflorin as well as the absorptive behavior influenced by co-administration of sinomenine using an in vitro everted rat gut sac model. The results showed a good linear correlation between the paeoniflorin absorption in sac contents and the incubation time from 0 to 90 min. However, the concentration dependence showed that a non-linear correlation exists between the paeoniflorin absorption and its concentrations from 10 to 160 microM, and the absorption was saturated at about 80 microM of the drug. Sinomenine at 16 and 136 microM concentrations could significantly enhance the absorption of paeoniflorin (20 microM) by 1.5- and 2.5-fold, respectively. Moreover, two well-known P-glycoprotein inhibitors, verapamil and quinidine, could significantly elevate the absorption of paeoniflorin by 2.1- and 1.5-fold, respectively. Furthermore, sinomenine in a pattern, which influenced paeoniflorin's absorption, manifested as similar to that of P-glycoprotein inhibitors. In conclusion, sinomenine significantly enhance the intestinal absorption of paeoniflorin, subsequently improve the bioavailability of paeoniflorin. The mechanism underlying the improvement of paeoniflorin's bioavailability was proposed that sinomenine could decrease the efflux transport of paeoniflorin by P-glycoprotein.
Citation
Journal of ethnopharmacology, 103(3): 425-432
Research Unit
PubMed ID
16169700
PubMed Central ID
Embedded videos
Type
Journal article
Language
en
Description
Series/Report no.
ISSN
0378-8741
EISSN
ISBN
ISMN
Gov't Doc #
Sponsors
Rights
Research Projects
Organizational Units
Journal Issue
Embedded videos