Loading...
Thumbnail Image
Item

Expression of sigma receptors in human cancer cell lines and effects of novel sigma-2 ligands on their proliferation

Abbas, Haider
Alternative
Abstract
Sigma receptors originally thought to be an opioid receptor is now categorized as a distinct class of receptor. There are two main subtypes, the sigma-1 receptor and an uncharacterised binding site, named the sigma-2 binding site. The presence of the sigma-2 binding site shows high correlation with proliferation of cells and is associated with cancer. I have categorized sigma-1 and sigma-2 binding sites in 11 human tumour cell lines. I have demonstrated that tumour cell lines from a range of tissues express both sigma-1 and sigma-2 binding sites. One exception is the MCF7 breast cancer cell line, which lacks sigma-1 receptors. I show that the quantitation of sigma-2 binding sites using the “masking” protocols are flawed, significantly overestimating levels of sigma-2 binding sites. I propose novel protocols to determine levels of sigma-1 receptors and sigma-2 binding sites in cell lines and tissue. Using radioligand binding assays in MCF7 cells, I have characterised novel sigma-2 ligands. These ligands are simple ammonium salts containing a single nitrogen atom. They are simpler than the previously recognised pharmacophore for the sigma-2 site. I have shown that these simple ammonium salts show graded affinity for the sigma-2 binding site. The highest affinity ligands were dihexylammonium (pKi 7.58) and dioctylammonium (pKi 7.9). I have used these ammonium salts and previously characterised ligands to determine sigma-2 binding site biology. I have shown that the biological activity of these drugs is related neither to their hydrophobicity nor their ability to effect calcium signalling in cells. I propose that the Hill slope of binding is inversely related to the efficacy of a ligand to inhibit metabolic activity of cancer cells. Furthermore, I offer an explanation as to why concentrations of sigma-2 ligands far higher than their determined binding affinities are required to inhibit metabolic activity.
Citation
Publisher
Journal
Research Unit
DOI
PubMed ID
PubMed Central ID
Embedded videos
Additional Links
Type
Thesis or dissertation
Language
en
Description
A thesis submitted for the degree of Doctor of Philosophy University of Wolverhampton.
Series/Report no.
ISSN
EISSN
ISBN
ISMN
Gov't Doc #
Sponsors
Rights
Research Projects
Organizational Units
Journal Issue
Embedded videos