The relative contributions of anaerobic and aerobic energy supply during track 100-, 400- and 800-m performance.
Nevill, Alan M. ; Ramsbottom, Roger ; Nevill, Mary E. ; Newport, S. ; Williams, C.
Nevill, Alan M.
Ramsbottom, Roger
Nevill, Mary E.
Newport, S.
Williams, C.
Editors
Other contributors
Affiliation
Epub Date
Issue Date
2008
Submitted date
Alternative
Abstract
AIM: The present study set out to identify the relative contribution of the laboratory determined physiological measures, (maximal) accumulated oxygen deficit (AOD) and maximal oxygen uptake (VO(2max)), when predicting track performance. METHODS: Fourteen volunteers (men: n=10; women: n=4); mean (+/- standard deviation [SD]) height 1.76+/-0.1 (men) vs 1.62+/-0.08 m (women); body mass: 67.9+/-7.1 (men) vs 50.6+/-8.2 kg (women), ran track races at distances of 100, 400 and 800 m. The individually determined (maximal) AOD and VO(2max) were measured under controlled laboratory conditions (68.3+/-10.2 vs 60.7+/-16.1; men vs women, mL.(2).Eq.kg(-1)) and (68.7+/-7.3 vs 55.6+/-4.3; men vs women, mL.kg(-1).min(-1)), respectively. RESULTS: Track performance could be predicted using both laboratory measures, AOD and , with a high degree of accuracy: R2=76.9%, 84.8% and 89.1% for 100, 400 and 800 m, respectively. Data analysis confirmed the dominant energy supply during 100-m sprinting was the anaerobic energy supply processes, reflected as AOD. In contrast, oxidative metabolism (reflected as VO(2max)) was the dominant source of energy supply during 800-m performance. CONCLUSION: The results support earlier research, rather than present textbook dogma, namely that aerobic and anaerobic processes contribute equally to maximal exercise lasting approximately 60 s.
Citation
The Journal of Sports Medicine and Physical Fitness, 48(2): 138-142
Publisher
Journal
Research Unit
DOI
PubMed ID
18427406
PubMed Central ID
Embedded videos
Additional Links
Type
Journal article
Language
en
Description
Series/Report no.
ISSN
0022-4707