Loading...
Thumbnail Image
Item

Conscious multisensory integration: Introducing a universal contextual field in biological and deep artificial neural networks

Adeel, Ahsan
Alternative
Abstract
Conscious awareness plays a major role in human cognition and adaptive behaviour, though its function in multisensory integration is not yet fully understood, hence, questions remain: How does the brain integrate the incoming multisensory signals with respect to different external environments? How are the roles of these multisensory signals defined to adhere to the anticipated behavioural-constraint of the environment? This work seeks to articulate a novel theory on conscious multisensory integration that addresses the aforementioned research challenges. Specifically, the well-established contextual field (CF) in pyramidal cells and coherent infomax theory [1][2] is split into two functionally distinctive integrated input fields: local contextual field (LCF) and universal contextual field (UCF). LCF defines the modulatory sensory signal coming from some other parts of the brain (in principle from anywhere in space-time) and UCF defines the outside environment and anticipated behaviour (based on past learning and reasoning). Both LCF and UCF are integrated with the receptive field (RF) to develop a new class of contextually-adaptive neuron (CAN), which adapts to changing environments. The proposed theory is evaluated using human contextual audio-visual (AV) speech modelling. Simulation results provide new insights into contextual modulation and selective multisensory information amplification/suppression. The central hypothesis reviewed here suggests that the pyramidal cell, in addition to the classical excitatory and inhibitory signals, receives LCF and UCF inputs. The UCF (as a steering force or tuner) plays a decisive role in precisely selecting whether to amplify/suppress the transmission of relevant/irrelevant feedforward signals, without changing the content e.g., which information is worth paying more attention to? This, as opposed to, unconditional excitatory and inhibitory activity in existing deep neural networks (DNNs), is called conditional amplification/suppression.
Citation
Adeel, A. (2020) Conscious multisensory integration: Introducing a universal contextual field in biological and deep artificial neural networks, Frontiers in Computational Neuroscience, 14:15
Research Unit
PubMed ID
PubMed Central ID
Embedded videos
Type
Journal article
Language
en
Description
© 2020 The Authors. Published by Frontiers Media. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3389/fncom.2020.00015
Series/Report no.
ISSN
1662-5188
EISSN
ISBN
ISMN
Gov't Doc #
Sponsors
Rights
Research Projects
Organizational Units
Journal Issue
Embedded videos