Loading...
Thumbnail Image
Item

An intelligent risk management framework for monitoring vehicular engine health

Rahim, Md. Abdur
Rahman, Md Mustafizur
Zaman, Nafees
Moustafa, Nour
Razzak, Imran
Alternative
Abstract
The unwanted vehicular engine irregularities diminish vehicular competence, hinder productivity, waste time, and sluggish personal/national economic growth. Transportation sectors are essential infrastructures that require practical vulnerability assessment to avoid unexpected consequences through risk severity assessment. Artificial intelligence would be vital in the Industry 4.0 era to eliminate these issues for seamless activity and ultimate productivity. This article presents a risk management framework that includes an efficient decision model for monitoring and diagnosing vehicular engine health and condition in real-time using vulnerable components information and advanced techniques. To do this, we used the vulnerability identification frame to identify the vulnerable objects. We created a decision model that used an infrastructure vulnerability assessment model and sensor-actuator data to diagnose and categorise engine conditions as good, minor, moderate, or critical. We used machine learning and deep learning algorithms to assess the effectiveness of the risk management system’s decision model. The stacked ensemble of the deep learning algorithm outperformed other standard machine learning and deep learning algorithms in providing 80.3% decision accuracy for the 80% training data and efficiently managing large amounts of data. Anticipating the proposed framework might assist the automotive sector in advancing with cutting-edge facilities that are up to date.
Citation
Rahim, M.A., Rahman, M.A., Rahman, M.M., Zaman, N., Moustafa, N. and Razzak, I. (2022) An intelligent risk management framework for monitoring vehicular engine health. IEEE Transactions on Green Communications and Networking, 6(3), pp. 1298-1306 10.1109/TGCN.2022.3179350
Publisher
Research Unit
PubMed ID
PubMed Central ID
Embedded videos
Type
Journal article
Language
en
Description
This is an accepted manuscript of an article published by IEEE on 31/05/2022, available online: https://ieeexplore.ieee.org/document/9785863 The accepted version of the publication may differ from the final published version.
Series/Report no.
ISSN
2473-2400
EISSN
2473-2400
ISBN
ISMN
Gov't Doc #
Sponsors
Rights
Research Projects
Organizational Units
Journal Issue
Embedded videos