Adenovirus-mediated expression of HSV1-TK or Fas ligand induces cell death in primary human glioma-derived cell cultures that are resistant to the chemotherapeutic agent CCNU.
Maleniak, Tricia C. ; Darling, John L. ; Lowenstein, Pedro R. ; Castro, Maria G.
Maleniak, Tricia C.
Darling, John L.
Lowenstein, Pedro R.
Castro, Maria G.
Editors
Other contributors
Affiliation
Epub Date
Issue Date
2001
Submitted date
Subjects
Alternative
Abstract
Due to minimal treatment success with surgery, radiotherapy, and chemotherapy, the aim of this study was to test the therapeutic potential of gene therapy for the treatment of glioblastoma multiforme (GBM). We have quantitatively analyzed two gene therapy approaches using short-term human glioma cell cultures derived from surgical biopsies (designated IN859, IN1612, IN2045, IN1760, and IN1265) and compared the results of gene therapy with the chemosensitivity of the same cells. All of the glioma cell cultures tested were susceptible to recombinant adenovirus (RAd)-mediated infection. Expression of herpes simplex virus type 1-thymidine kinase (RAd128), followed by ganciclovir treatment, induced apoptosis in all of the glioma cell cultures studied, including three that are resistant to the chemotherapeutic drug 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU). Expression of murine Fas ligand (RAdhCMV-mFasL) also induced cell death in four of the five cell cultures studied. One cell culture that was resistant to CCNU was also resistant to apoptosis induced by mFasL expression. These results suggest that sensitivity to chemotherapeutic agents does not necessarily correlate with the sensitivity to gene therapy treatments. RAds expressing therapeutic gene products in human glioma cell cultures are able to induce apoptosis even in some cells that are resistant to a commonly used chemotherapeutic agent. Therefore, RAd-mediated gene transfer could be a good candidate to further develop gene therapy for the treatment of GBM.
Citation
Cancer Gene Therapy, 8(8): 589-598
Publisher
Journal
Research Unit
PubMed ID
11571537
PubMed Central ID
Embedded videos
Type
Journal article
Language
en
Description
Metadata only. Full text available at links above.
Series/Report no.
ISSN
0929-1903