Loading...
Water channel pore size determines exclusion properties but not solute selectivity
Kitchen, Philip ; Salman, Mootaz M ; Pickel, Simone U ; Jennings, Jordan ; Törnroth-Horsefield, Susanna ; Conner, Matthew T ; Bill, Roslyn M ; Conner, Alex C
Kitchen, Philip
Salman, Mootaz M
Pickel, Simone U
Jennings, Jordan
Törnroth-Horsefield, Susanna
Conner, Matthew T
Bill, Roslyn M
Conner, Alex C
Editors
Other contributors
Affiliation
Epub Date
Issue Date
2019-12-30
Submitted date
Subjects
Alternative
Abstract
Aquaporins (AQPs) are a ubiquitous family of transmembrane water channel proteins. A subgroup of AQP water channels also facilitates transmembrane diffusion of small, polar solutes. A constriction within the pore, the aromatic/arginine (ar/R) selectivity filter, is thought to control solute permeability: previous studies on single representative water channel proteins suggest narrow channels conduct water, whilst wider channels permit passage of solutes. To assess this model of selectivity, we used mutagenesis, permeability measurements and in silico comparisons of water-specific as well as glycerol-permeable human AQPs. Our studies show that single amino acid substitutions in the selectivity filters of AQP1, AQP4 and AQP3 differentially affect glycerol and urea permeability in an AQP-specific manner. Comparison between in silico-calculated channel cross-sectional areas and in vitro permeability measurements suggests that selectivity filter cross-sectional area predicts urea but not glycerol permeability. Our data show that substrate discrimination in water channels depends on a complex interplay between the solute, pore size, and polarity, and that using single water channel proteins as representative models has led to an underestimation of this complexity.
Citation
Kitchen, P., Salman, M.M., Pickel, S.U. et al. (2019) Water channel pore size determines exclusion properties but not solute selectivity, Science Reports, 9, 20369, doi:10.1038/s41598-019-56814-z
Publisher
Journal
Research Unit
PubMed ID
PubMed Central ID
Embedded videos
Additional Links
Type
Journal article
Language
en
Description
Series/Report no.
ISSN
2045-2322
EISSN
2045-2322