• Genomic and transcriptomic characterisation of undifferentiated pleomorphic sarcoma of bone

      Ali, Naser M.; Niada, Stefania; Brini, Anna T.; Morris, Mark R.; Kurusamy, Sathishkumar; Alholle, Abdullah; Huen, David; Antonescu, Cristina R.; Tirode, Franck; Sumathi, Vaiyapuri; Latif, Farida (Wiley, 2018-10-03)
      Undifferentiated pleomorphic sarcoma of bone (UPSb), is a rare primary bone sarcoma that lacks a specific line of differentiation. There is very little information about the genetic alterations leading to tumourigenesis or malignant transformation. Distinguishing between UPSb and other malignant bone sarcomas, including dedifferentiated chondrosarcoma and osteosarcoma, can be challenging due to overlapping features. To explore the genomic and transcriptomic landscape of UPSb tumours, whole-exome sequencing (WES) and RNA Sequencing (RNA-Seq) were performed on UPSb tumours. All tumours lacked hotspot mutations in IDH1/2 132 or 172 codons, thereby excluding the diagnosis of dedifferentiated chondrosarcoma. Recurrent somatic mutations in TP53 were identified in 4/14 samples (29%). Moreover, recurrent mutations in histone chromatin remodelling genes, including H3F3A, ATRX and DOT1L, were identified in 5/14 samples (36%), highlighting the potential role of deregulated chromatin remodelling pathways in UPSb tumourigenesis. The majority of recurrent mutations in chromatin remodelling genes identified here are reported in COSMIC, including the H3F3A G35 and K36 hotspot residues. Copy number alteration analysis identified gains and losses in genes that have been previously altered in UPSb or UPS of soft tissue. Eight somatic gene fusions were identified by RNA-Seq, two of which, CLTC-VMP1 and FARP1-STK24, were reported previously in multiple cancers. Five gene fusions were genomically characterised. Hierarchical clustering analysis, using RNA-Seq data, distinctly clustered UPSb tumours from osteosarcoma and other sarcomas, thus molecularly distinguishing UPSb from other sarcomas. RNA-Seq expression profiling analysis and quantitative RT-PCR showed an elevated expression in FGF23 which can be a potential molecular biomarker in UPSb. To our knowledge, this study represents the first comprehensive WES and RNA-Seq analysis of UPSb tumours revealing novel protein-coding recurrent gene mutations, gene fusions and identifying a potential UPSb molecular biomarker, thereby broadening the understanding of the pathogenic mechanisms and highlighting the possibility of developing novel targeted therapeutics.
    • Towards identifying potent new hits for glioblastoma

      Sherer, Chris; Prabhu, Saurabh; Adams, David; Hayes, Joseph; Rowther, Farzana; Tolaymat, Ibrahim; Warr, Tracy; Snape, Timothy J. (Royal Society of Chemistry, 2018-10-02)
      Glioblastoma is a devastating disease of the brain and is the most common malignant primary brain tumour in adults. The prognosis for patients is very poor with median time of survival after diagnosis measured in months, due in part to the tumours being highly aggressive and often resistant to chemotherapies. Alongside the ongoing research to identify key factors involved in tumour progression in glioblastoma, medicinal chemistry approaches must also be used in order to rapidly establish new and better treatments for brain tumour patients. Using a computational similarity search of the ZINC database, alongside traditional analogue design by medicinal chemistry intuition to improve the breadth of chemical space under consideration, six new hit compounds (14, 16, 18, 19, 20 and 22) were identified possessing low micromolar activity against both established cell lines (U87MG and U251MG) and patient-derived cell cultures (IN1472, IN1528 and IN1760). Each of these scaffolds provides a new platform for future development of a new therapy in this area, with particular promise shown against glioblastoma subtypes that are resistant to conventional chemotherapeutic agents.
    • Randomised controlled trial of a home-based physical activity intervention in breast cancer survivors

      Lahart, Ian M.; Metsios, George S.; Nevill, Alan M.; Kitas, George D.; Carmichael, Amtul R. (2016-03-17)
      Background: To improve adherence to physical activity (PA), behavioural support in the form of behavioural change counselling may be necessary. However, limited evidence of the effectiveness of home-based PA combined with counselling in breast cancer patients exists. The aim of this current randomised controlled trial with a parallel group design was to evaluate the effectiveness of a home-based PA intervention on PA levels, anthropometric measures, health-related quality of life (HRQoL), and blood biomarkers in breast cancer survivors. Methods: Eighty post-adjuvant therapy invasive breast cancer patients (age = 53.6 ± 9.4 years; height = 161.2 ± 6.8 cm; mass = 68.7 ± 10.5 kg) were randomly allocated to a 6-month home-based PA intervention or usual care. The intervention group received face-to-face and telephone PA counselling aimed at encouraging the achievement of current recommended PA guidelines. All patients were evaluated for our primary outcome, PA (International PA Questionnaire) and secondary outcomes, mass, BMI, body fat %, HRQoL (Functional assessment of Cancer Therapy-Breast), insulin resistance, triglycerides (TG) and total (TC), high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) cholesterol were assessed at baseline and at 6-months. Results: On the basis of linear mixed-model analyses adjusted for baseline values performed on 40 patients in each group, total, leisure and vigorous PA significantly increased from baseline to post-intervention in the intervention compared to usual care (between-group differences, 578.5 MET-min∙wk−1, p = .024, 382.2 MET-min∙wk−1, p = .010, and 264.1 MET-min∙wk−1, p = .007, respectively). Both body mass and BMI decreased significantly in the intervention compared to usual care (between-group differences, −1.6 kg, p = .040, and −.6 kg/m2, p = .020, respectively). Of the HRQoL variables, FACT-Breast, Trial Outcome Index, functional wellbeing, and breast cancer subscale improved significantly in the PA group compared to the usual care group (between-group differences, 5.1, p= .024; 5.6, p = .001; 1.9 p = .025; and 2.8, p=.007, respectively). Finally, TC and LDL-C was significantly reduced in the PA group compared to the usual care group (between-group differences, −.38 mmol∙L−1, p=.001; and −.3 mmol∙L−1, p=.023, respectively). Conclusions: We found that home-based PA resulted in significant albeit small to moderate improvements in selfreported PA, mass, BMI, breast cancer specific HRQoL, and TC and LDL-C compared with usual care.
    • Germline Mutations in the CDKN2B Tumor Suppressor Gene Predispose to Renal Cell Carcinoma.

      Jafri, Mariam; Wake, Naomi C; Ascher, David B; Pires, Douglas E V; Gentle, Dean; Morris, Mark R.; Rattenberry, Eleanor; Simpson, Michael A; Trembath, Richard C; Weber, Astrid; Woodward, Emma R; Donaldson, Alan; Blundell, Tom L; Latif, Farida; Maher, Eamonn R (American Association for Cancer Research, 2015-07)
      Familial renal cell carcinoma (RCC) is genetically heterogeneous and may be caused by mutations in multiple genes, including VHL, MET, SDHB, FH, FLCN, PTEN, and BAP1. However, most individuals with inherited RCC do not have a detectable germline mutation. To identify novel inherited RCC genes, we undertook exome resequencing studies in a familial RCC kindred and identified a CDKN2B nonsense mutation that segregated with familial RCC status. Targeted resequencing of CDKN2B in individuals (n = 82) with features of inherited RCC then revealed three candidate CDKN2B missense mutations (p.Pro40Thr, p.Ala23Glu, and p.Asp86Asn). In silico analysis of the three-dimensional structures indicated that each missense substitution was likely pathogenic through reduced stability of the mutant or reduced affinity for cyclin-dependent kinases 4 and 6, and in vitro studies demonstrated that each of the mutations impaired CDKN2B-induced suppression of proliferation in an RCC cell line. These findings identify germline CDKN2B mutations as a novel cause of familial RCC.
    • Non-Steroidal Anti-Inflammatory Drugs, DNA Repair and Cancer

      Dibra, Harpreet K.; Perry, Chris J.; Nicholl, Iain D. (InTech, 2011)
    • A role for human endogenous retrovirus-K (HML-2) in rheumatoid arthritis: investigating mechanisms of pathogenesis.

      Freimanis, Graham L.; Hooley, Paul; Ejtehadi, H Dava; Ali, H. A.; Veitch, A.; Rylance, P.; Alawi, A.; Axford, J.; Nevill, Alan M.; Murray, Paul G.; Nelson, Paul N. (Wiley-Blackwell, 2010)
      Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections within the human genome. These molecular fossils draw parallels with present-day exogenous retroviruses and have been linked previously with immunopathology within rheumatoid arthritis (RA). Mechanisms of pathogenesis for HERV-K in RA such as molecular mimicry were investigated. To clarify a role for HERVs in RA, potential autoantigens implicated in autoimmunity were scanned for sequence identity with retroviral epitopes. Short retroviral peptides modelling shared epitopes were synthesized, to survey anti-serum of RA patients and disease controls. A novel real-time polymerase chain reaction (PCR) assay was also developed to quantify accurately levels of HERV-K (HML-2) gag expression, relative to normalized housekeeping gene expression. Both serological and molecular assays showed significant increases in HERV-K (HML-2) gag activity in RA patients, compared to disease controls. The real-time PCR assay identified significant up-regulation in HERV-K mRNA levels in RA patients compared to inflammatory and healthy controls. Exogenous viral protein expression and proinflammatory cytokines were also shown to exert modulatory effects over HERV-K (HML-2) transcription. From our data, it can be concluded that RA patients exhibited significantly elevated levels of HERV-K (HML-2) gag activity compared to controls. Additional factors influencing HERV activity within the synovium were also identified. The significant variation in RA patients, both serologically and transcriptionally, may be an indication that RA is an umbrella term for a number of separate disease entities, of which particular HERV polymorphisms may play a role in development.
    • Aspirin and alterations in DNA repair proteins in the SW480 colorectal cancer cell line.

      Dibra, H. K.; Brown, J. E.; Hooley, Paul; Nicholl, I. D. (Spandios Publications, 2010)
      Regular aspirin intake is associated with a reduction in the incidence of colorectal cancer. Aspirin has been shown to be cytotoxic to colorectal cancer cells in vitro. The molecular basis for this cytotoxicity is controversial, with a number of competing hypotheses in circulation. One suggestion is that the protective effect is related to the induction of expression of the DNA mismatch repair (MMR) proteins hMLH1, hMSH2, hMSH6 and hPMS2 in DNA MMR proficient cells. We report that treatment of the DNA MMR competent/p53 mutant colorectal cancer cell line SW480 with 1 mM aspirin for 48 h caused changes in mRNA expression of several key genes involved in DNA damage signalling pathways, including a significant down-regulation in transcription of the genes ATR, BRCA1 and MAPK12. Increases in the transcription of XRCC3 and GADD45alpha genes are also reported. Regulation of these genes could potentially have profound effects on colorectal cancer cells and may play a role in the observed chemo-protective effect of aspirin in vivo. Although a correlation was not seen between transcript and protein levels of ATR, BRCA1 and GADD45alpha, an increase in XRCC3 encoded protein expression upon aspirin treatment in SW480 cells was observed by immunoblotting, immunofluorescence and immunohistochemical analysis. This is the first report of XRCC3 gene transcription and encoded protein expression being susceptible to exposure to the non-steroidal anti-inflammatory drug, aspirin. Furthermore, this study indicates that alterations in gene transcription seen in microarray studies must be verified at the protein level.
    • Hydrophobins: new prospects for biotechnology

      Cox, P. W.; Hooley, Paul (2009)
      Hydrophobins are small amphipathic molecules found uniquely in fungi. They perform crucial roles in allowing filamentous species to break through interfaces during aerial hyphae formation, sporulation, fruit body production and cell penetration. Initial biotechnological applications have exploited materials coated with hydrophobins to switch hydrophobic surfaces to hydrophilic and vice versa. Recent improvements in our understanding of the biophysics of hydrophobin layer formation, including the use of mixed types of molecules, together with advances in genomics promise to extend greatly the potential for hydrophobin biotechnologies.
    • Vascular endothelial growth factor in astroglioma stem cell biology and response to therapy

      Knizetova, Petra; Darling, John L.; Bartek, Jiri (Wiley InterScience, 2008)
      Malignant astrogliomas are among the most aggressive, highly vascular and infiltrating tumours bearing a dismal prognosis, mainly due to their resistance to current radiation treatment and chemotherapy. Efforts to identify and target the mechanisms that underlie astroglioma resistance have recently focused on candidate cancer stem cells, their biological properties, interplay with their local microenvironment or 'niche', and their role in tumour progression and recurrence. Both paracrine and autocrine regulation of astroglioma cell behaviour by locally produced cytokines such as the vascular endothelial growth factor (VEGF) are emerging as key factors that determine astroglioma cell fate. Here, we review these recent rapid advances in astroglioma research, with emphasis on the significance of VEGF in astroglioma stem-like cell biology. Furthermore, we highlight the unique DNA damage checkpoint properties of the CD133-marker-positive astroglioma stem-like cells, discuss their potential involvement in astroglioma radioresistance, and consider the implications of this new knowledge for designing combinatorial, more efficient therapeutic strategies.
    • The Aspergillus nidulans stress response transcription factor StzA is ascomycete-specific and shows species-specific polymorphisms in the C-terminal region.

      Chilton, Ian J.; Delaney, C. E,; Barham-Morris, J.; Fincham, Daron A.; Hooley, Paul; Whitehead, Michael P. (Elsevier, 2008)
      Orthologues of the Aspergillus nidulans gene stzA were identified and characterised in an additional 19 fungi. These orthologues were restricted to, and found within all the Pezizomycotina subphyla of the Ascomycota, for which data are available, but not the Saccharomycotina or Taphrinomycotina subphyla. Intron analysis indicated that both intron loss and gain have occurred in this gene. The orthologous proteins demonstrate considerable size variation (between 663 and 897 amino acids); with almost all this variability accounted for by a hyper-variable region that is carboxy terminal to the zinc finger region. The Hypocrea jecorina orthologue (ACE1) has the binding site 5'AGGCA. There is evidence of competition, or interaction, between the ACE1/StzA and AreA binding sites in promoters of stzA and its orthologues, as well as genes involved in the metabolism of amino acids. The A. nidulans and A. fumigatus cpcA promoters have seven potential ACE1/StzA binding sites, six of which are highly conserved in position. Two very closely positioned sites are conserved across 14 of the 19 fungi analysed. Potential CpcA binding sites (5'TGAC/GTCA) have been identified between -50 and -170bp of the ATG start in the promoters of 16 of the stzA orthologues.
    • Eukaryote polyphosphate kinases: is the 'Kornberg' complex ubiquitous?

      Hooley, Paul; Whitehead, Michael P.; Brown, Michael R. W. (Elsevier, 2008)
      Polyphosphate (poly P) is a polymer of up to several hundred phosphate residues and is important to a variety of cell processes. The main poly P synthetic enzyme in many bacteria is poly P kinase 1 (PPK1), which until recently had been detected among eukaryotes in some protists only. There is now evidence for the presence in several other eukaryotes of PPK1 homologues and also a second bacteria-type enzyme, PPK2. The latest genome databases reveal that the 'Kornberg' enzyme complex of three actin-related proteins, termed DdPPK2 in Dictyostelium discoideum, might also be ubiquitous in eukaryotes. Owing to the intimate association of poly P synthesis with the formation of structural fibres, this ubiquity indicates a central role for this molecule in the evolution of eukaryotic cells.
    • Molecular biology masterclasses – developing practical skills and building links with Higher Education in years 12/13

      Hooley, Paul; Cooper, Phillippa; Skidmore, Nick (Higher Education Academy, 2008)
      A one day practical course in molecular biology skills suitable for year 12/13 students is described. Colleagues from partner schools and colleges were trained by university staff in basic techniques and then collaborated in the design of a course suitable for their own students. Participants carried out a transformation of E.coli cells with a plasmid and cut lambda virus DNA with restriction enzymes for display via agarose gel electrophoresis. Practical demonstrations of the polymerase chain reaction (PCR) and fermentation technology were also given. An evaluation of year 12/13 student responses revealed considerable enthusiasm for the activities.
    • Phytoestrogens: perpetrators or protectors?

      Martin, Jan H.; Crotty, Stephen; Nelson, Paul N. (Future Medicine Ltd, 2007)
      Phytoestrogens are estrogen-like substances produced by plants that account for some of the constituents present in vegetation that may be responsible for the health benefits of a diet rich in fruit and vegetables. Phytoestrogens have a plethora of different actions that they are capable of exerting on cellular metabolism. This review will focus on some of the major non-estrogen receptor-mediated cellular effects used by phytoestrogens and will draw attention to the fact that while they may have a number of beneficial effects, particularly in offering a protective effect against some hormone-dependent cancers, such as breast and prostate cancer, they may also have possible unfavorable effects by interfering with the functioning of normal cellular activities such as receptor-mediated signal transduction and DNA replication, as well as being genotoxic, mutagenic and promoting the proliferation of some cancer cells.
    • The identification of a novel alternatively spliced form of the MBD4 DNA glycosylase.

      Owen, Rhiannon M.; Baker, Rachael D.; Bader, Scott; Dunlop, Malcolm G.; Nicholl, Iain D. (Spandidos Publications Ltd, 2007)
      Methyl-CpG binding protein 4 (MBD4) is a mismatch-specific G:T and G:U DNA glycosylase. During an analysis of MBD4 expression in HeLa cells we noted the presence of an unexpectedly short reverse transcribed product. This cDNA lacked the region encoding the methyl-binding domain and exon 3 of MBD4 but retained the glycosylase domain. Sequence comparison indicates the existence of a previously unreported cryptic splice site in the MBD4 genomic sequence thus illuminating a mechanism whereby a glycosylase acquired a methyl-binding capacity, thus targeting potential mutagenic CpG sites. In vitro assays of this highly purified species, refolded in arginine rich conditions, confirmed that this unique, short version of MBD4 possessed uracil DNA glycosylase but not thymine DNA glycosylase activity. We conclude that the identification of a transcript encoding a short version of MBD4 indicates that MBD4 expression may be more complex than previously reported, and is worthy of further investigation.
    • Interactions of cell penetrating peptide Tat with model membranes: a biophysical study.

      Dennison, Sarah R.; Baker, Rachael D.; Nicholl, Iain D.; Phoenix, David A. (Elsevier Science Direct, 2007)
      The protein transduction domain of the HIV-1 transactivator of transcription, Tat (Tat((48-60))), has been shown to transport P10, a cytotoxic peptide mimic of the cyclin dependent kinase inhibitor p21WAF1/CIP1, into the nucleus of cancerous cells and induce apoptosis. Here, monolayer studies were used to investigate the membrane interactions of Tat((48-60)), P10 and the construct Tat((48-60))P10. It was found that Tat((48-60)) showed no significant surface activity but that both P10 and Tat((48-60))P10, were highly surface active, inducing surface pressure changes of 9.7 and 8.9mNm(-1), respectively, with DMPS monolayers. The comparison of Tat((48-60))P10 and P10 surface interactions would be consistent with a hypothesis that the cargo attachment influences the capacity of the Tat-protein transduction domain to mediate transport across membranes either directly or via localisation of the construct at the membrane interface.
    • In vitro evaluation of cancer-specific NF-kappaB-CEA enhancer-promoter system for 5-fluorouracil prodrug gene therapy in colon cancer cell lines.

      Guo, X.; Evans, T.R.J.; Somanath, S.; Armesilla, Angel Luis; Darling, John L.; Schatzlein, A.; Cassidy, James; Wang, Weiguang (Nature Publishing Group, 2007)
      Nuclear factor-kappa B (NF-kappaB) is a transcription factor with high transcriptional activity in cancer cells. In this study, we developed a novel enhancer-promoter system, kappaB4-CEA205, in which the basal carcinoembryonic antigen (CEA) promoter sequence (CEA205) was placed downstream of the four tandem-linked NF-kappaB DNA-binding sites (kappaB4). In combination with a kappaB4 enhancer, the transcriptional activity of the CEA promoter was significantly enhanced (three- to eight-fold) in cancer cell lines but not in normal cells. In cancer cell lines, the transcriptional activity of kappaB4-CEA205 was comparable with that of the SV40 promoter. We also constructed vectors in which the thymidine phosphorylase (TP) cDNA was under the control of CEA205, kappaB4, kappaB4-CEA205 and CMV promoters, respectively. TP protein and enzyme activity were detected at comparable levels in kappaB4-CEA205- and CMV-driven TP cDNA-transfected cancer cell lines (H630 and RKO). The kappaB4-TP and CEA205-TP-transfected cell lines, respectively, only demonstrated negligible and low levels of TP protein and enzyme activity. Both CMV- and kappaB4-CEA205-driven TP cDNA transiently transfected cells were 8- to 10-fold sensitised to 5-fluorouracil (5-FU) prodrug, 5'-deoxy-5-fluorouradine (5'-DFUR), in contrast to only 1.5- to 2-fold sensitised by the kappaB4- and CEA205-driven TP cDNA-transfected cells. The bystander killing effect of CMV- and kappaB4-CEA205-driven TP cDNA-transfected cells was comparable. This is the first report that indicates that the NF-kappaB DNA-binding site could be used as a novel cancer-specific enhancer to improve cancer-specific promoter activity in gene-directed enzyme prodrug therapy.
    • The many futures for cell-penetrating peptides: how soon is now?

      Howl, John D.; Nicholl, Iain D.; Jones, Sarah (Portland Press on behalf of the Biochemical Society, 2007)
      Studies of CPPs (cell-penetrating peptides), sequences that are also commonly designated as protein transduction domains, now extend to a second decade of exciting and far-reaching discoveries. CPPs are proven vehicles for the intracellular delivery of macromolecules that include oligonucleotides, peptides and proteins, low-molecular-mass drugs, nanoparticles and liposomes. The biochemical properties of different classes of CPP, including various sequences derived from the HIV-1 Tat (transactivator of transcription) [e.g. Tat-(48-60), GRKKRRQRRRPPQ], and the homeodomain of the Drosophila homeoprotein Antennapaedia (residues 43-58, commonly named penetratin, RQIKIWFQNRRMKWKK), also provide novel insights into the fundamental mechanisms of translocation across biological membranes. Thus the efficacy of CPP-mediated cargo delivery continues to provide valuable tools for biomedical research and, as witnessed in 2007, candidate and emerging therapeutics. Thus it is anticipated that the further refinement of CPP technologies will provide drug-delivery vectors, cellular imaging tools, nanoparticulate devices and molecular therapeutics that will have a positive impact on the healthcare arena. The intention of this article is to provide both a succinct overview of current developments and applications of CPP technologies, and to illustrate key developments that the concerted efforts of the many researchers contributing to the Biochemical Society's Focused Meeting in Telford predict for the future. The accompanying papers in this issue of Biochemical Society Transactions provide additional details and appropriate references. Hopefully, the important and eagerly anticipated biomedical and clinical developments within the CPP field will occur sooner rather than later.
    • Does an apple a day keep the doctor away because a phytoestrogen a day keeps the virus at bay? A review of the anti-viral properties of phytoestrogens.

      Martin, Jan H.; Crotty, Stephen; Warren, Phil; Nelson, Paul N. (Elsevier, 2007)
      From dengue to herpes and influenza to AIDS, the phytoestrogens that are present in many fruits and vegetables have been shown to exert anti-viral properties. Here we review the various different anti-viral mechanisms employed by phytoestrogens.
    • A sychnological cell penetrating peptide mimic of p21(WAF1/CIP1) is pro-apoptogenic.

      Baker, Rachael D.; Howl, John D.; Nicholl, Iain D. (Amsterdam: Elsevier, 2007)
      Targeting chemotherapeutic agents directly to sites of DNA replication and repair within cancerous cells is problematic. This study attempts to address the issue of nuclear delivery of biologically active peptides with the potential to disrupt cancer cell growth. Herein, the protein transduction domain of the HIV-1 transactivator of transcription, Tat (Tat(48-60)), is used to deliver a cytotoxic peptide mimic of the cyclin-dependent kinase inhibitor, p21(WAF1/CIP1) into the nucleus. This construct, which we designate as Tat(48-60)-P10, contains the PCNA interacting protein (PIP) box. We demonstrate the utility of Tat(48-60) for peptide delivery to the nucleus and show that Tat(48-60)-P10 induces apoptosis specific to the inclusion of the wild type PIP box containing sequence. Colocalization of Tat(48-60)-P10 with nuclear PCNA was observed by immunofluorescence analysis, supporting the hypothesis that cytotoxicity is potentially related to disruption of nuclear PCNA function. The U251 and U373 glioma cell lines exhibited particular sensitivity to the construct.
    • Assigning Level in Data-mining Exercises

      Hooley, Paul; Chilton, Ian J.; Fincham, Daron A.; Burns, Alan T. H.; Whitehead, Michael P. (Centre for Bioscience, the Higher Education Academy, 2007)
      There is currently much interest in ascribing outcomes to Masters (M) level programmes. It is particularly difficult to define M level outcomes in bioinformatics for students on non-specialist programmes. An approach is described that attempts to discriminate undergraduate from M level in a data-mining exercise. Differentiation of level is based upon the taxonomic origin of a DNA sequence, the relative increase in gene complexity from lower to higher eukaryote and the initiative required to use a wider range of databases and analytical tools.