Show simple item record

dc.contributor.authorBabamohammadi, Shervan
dc.contributor.authorYusoff, Rozita
dc.contributor.authorAroua, Mohamed Kheireddine
dc.contributor.authorN.Borhani, Tohid
dc.date.accessioned2021-10-28T11:33:11Z
dc.date.available2021-10-28T11:33:11Z
dc.date.issued2021-10-21
dc.identifier.citationBabamohammadi, S., Yusoff, R., Aroua, M.K. and Borhani, T.N. (2021) Mass transfer coefficients of carbon dioxide in aqueous blends of monoethanolamine and glycerol using wetted-wall column. Journal of Environmental Chemical Engineering, 9(6), 106618.en
dc.identifier.issn2213-3437en
dc.identifier.doi10.1016/j.jece.2021.106618en
dc.identifier.urihttp://hdl.handle.net/2436/624424
dc.descriptionThis is an accepted manuscript of an article published by Elsevier in Journal of Environmental Chemical Engineering on 21/10/2021, available online: https://doi.org/10.1016/j.jece.2021.106618 The accepted version of the publication may differ from the final published version.en
dc.description.abstractThere is an urgent need for CO2 capture development because of the global warming crisis. Recently CO2 absorption by the mixture of Monoethanolamine (MEA) and glycerol, as an eco-friendly solvent, has been considered due to its promising performance and low technical and environmental impacts. However, more aspects of this process, especially mass transfer coefficients, need to be studied further. In this work, a bench-scale wetted-wall column was used to find the CO2 mass transfer coefficients in the aqueous blends of MEA (25 wt%) and glycerol (5-20 wt%). The experiments were performed nearly to the industrial conditions of flue gas at atmospheric pressure and three different temperatures (313, 323, and 333 K). The gas flow rate was maintained around 0.17±0.01 stdL/s, and the CO2 partial pressure was in the range of 1-15 kPa. The findings revealed that increasing the glycerol to 10 wt% improves the overall mass transfer (𝐾𝐺), and adding more glycerol up to 20 wt% decreases the 𝐾𝐺. The gas-side mass transfer resistance (1𝑘𝑔⁄) found to be negligible. Thus, the primary mass transfer resistance was in the liquid phase. It is also found that the solution with 10 wt% glycerol and 25 wt% MEA (10G25M) had the highest liquid-side mass transfer coefficient (𝑘𝑔′ ) among the other solutions. The 10G25M showed a comparable and even better absorption rate than solutions with a higher concentration of MEA studied in the literature. Compared with industrial-grade, the 𝑘𝑔′ of the 10G25M was over two times higher than the 30 wt% MEA solution.en
dc.formatapplication/pdfen
dc.languageen
dc.language.isoenen
dc.publisherElsevieren
dc.relation.urlhttps://www.sciencedirect.com/science/article/abs/pii/S2213343721015955?via%3Dihuben
dc.subjectmass transfer coefficienten
dc.subjectglycerolen
dc.subjectcarbon dioxideen
dc.subjectmonoethanolamineen
dc.subjectabsorptionen
dc.subjectwetted-wall columnen
dc.subjectcarbon captureen
dc.subjectCO2 emissionen
dc.titleMass transfer coefficients of carbon dioxide in aqueous blends of monoethanolamine and glycerol using wetted-wall columnen
dc.typeJournal articleen
dc.identifier.journalJournal of Environmental Chemical Engineeringen
dc.date.updated2021-10-25T21:16:32Z
dc.date.accepted2021-10-17
rioxxterms.funderUniversity of Wolverhamptonen
rioxxterms.identifier.projectUOW28102021TBen
rioxxterms.versionAMen
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en
rioxxterms.licenseref.startdate2022-10-21en
dc.source.volume9
dc.source.issue6
dc.source.beginpage106618
dc.source.endpage106618
dc.description.versionAccepted version
refterms.dateFCD2021-10-28T11:32:07Z
refterms.versionFCDAM
ο»Ώ

Files in this item

Thumbnail
Name:
Publisher version
Thumbnail
Name:
Babamohammadi_Mass_Transfer_20 ...
Embargo:
2022-10-21
Size:
1.753Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/