Show simple item record

dc.contributor.authorRobinson, John
dc.contributor.authorArjunan, Arun
dc.contributor.authorBaroutaji, Ahmad
dc.contributor.authorStanford, Mark
dc.date.accessioned2021-09-23T14:10:08Z
dc.date.available2021-09-23T14:10:08Z
dc.date.issued2021-10-08
dc.identifier.citationRobinson, J., Arjunan, A., Baroutaji, A. and Stanford, M. (2021) Mechanical and thermal performance of additively manufactured copper, silver, and copper-silver alloys. Proceedings of the Institution of Mechanical Engineers Part L: Journal of Materials, Design and Applications.en
dc.identifier.issn1464-4207en
dc.identifier.doi10.1177/14644207211040929
dc.identifier.urihttp://hdl.handle.net/2436/624360
dc.descriptionThis is an accepted manuscript of an article published by SAGE in Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications on 08/10/2021. The accepted version of the publication may differ from the final published version.en
dc.description.abstractOn-demand additive manufacturing (3D printing) offers great potential for the development of functional materials for the next generation of energy-efficient devices. In particular, novel materials suitable for efficient dissipation of localised heat fluxes and non-uniform thermal loads with superior mechanical performance are critical for the accelerated development of future automotive, aerospace, and renewable energy technologies. In this regard this study reports the Laser Powder Bed Fusion (L-PBF) processing of high purity (>99%) copper (Cu), silver (Ag) and novel copper-silver (CuAg) alloys ready for on-demand additive manufacturing (AM). The processed materials were experimentally analysed for their relative density, mechanical and thermal performance using X-ray computed tomography (X-CT), destructive tensile testing and Laser Flash Apparatus (LFA) respectively. It was found that while Ag featured higher failure strains, Cu in comparison showed a 109%, 17% and 59% improvement in yield strength (𝜎𝑦), Youngs Modulus (E) and ultimate tensile strength (UTS) respectively. As such the 𝜎𝑦, E and UTS for L-PBF Cu is comparable to commercially available L-PBF Cu materials. CuAg alloys however significantly outperformed Ag, Cu, and all commercial Cu materials when it came to mechanical performance offering significantly superior performance. The 𝜎𝑦, E and UTS for the novel CuAg composition were 105%, 33% and 94% higher in comparison to Cu. Although slightly different, the trend continued with a 106% and 91% rise for 𝜎𝑦 and UTS respectively for CuAg in comparison to industry-standard Cu. Unfortunately, E values for industry-standard Cu alloys were not available. When it came to thermal performance, L-PBF Ag was found to offer a 70% higher thermal diffusivity in comparison to Cu despite the variation in density and porosity. CuAg alloys however only showed a 0.8% variation in thermal performance despite a 10% to 30% increase in Ag. Overall, the study presents a new understanding regarding the 3D printing and performance of Cu, Ag and CuAg alloys.en
dc.description.sponsorshipThis research was conducted with support from the European Commission Research Grant 32R19P03053, University of Wolverhampton, Additive Analytics Ltd and EOS GmbH.en
dc.formatapplication/pdfen
dc.languageEnglish
dc.language.isoenen
dc.publisherSAGEen
dc.relation.urlhttps://journals.sagepub.com/doi/full/10.1177/14644207211040929en
dc.subjectmechanical performanceen
dc.subjectthermal performanceen
dc.subjectadditive manufacturingen
dc.subjectcopperen
dc.subjectsilveren
dc.subjectcopper-silver alloyen
dc.subjectdiffusivityen
dc.subjectlaser powder bed fusionen
dc.titleMechanical and thermal performance of additively manufactured copper, silver, and copper-silver alloysen
dc.typeJournal articleen
dc.identifier.journalProceedings of the Institution of Mechanical Engineers Part L: Journal of Materials, Design and Applicationsen
dc.date.updated2021-09-20T12:13:00Z
dc.date.accepted2021-08-03
rioxxterms.funderEuropean Commissionen
rioxxterms.identifier.project32R19P03053en
rioxxterms.versionAMen
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en
rioxxterms.licenseref.startdate2021-09-23en
refterms.dateFCD2021-09-23T14:09:35Z
refterms.versionFCDAM
refterms.dateFOA2021-09-23T14:10:09Z


Files in this item

Thumbnail
Name:
Robinson_et_al_Mechanical_and_ ...
Size:
1.099Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/