Abstract
Twitter data can be collected and analysed to be used for predicting the status of a transport network at a given time and geographic location (e.g. forecasting disruptions, congestions, or road closures). However, this requires geolocating the tweets to define the parts of the transport network which may be related to these tweets. This paper investigates the relationship between the actual transport network status, with that being synthesised using public Twitter data in the Greater Manchester conurbation. Therefore, it answers the following question: are the sentiments of tweets around the incidents and accidents areas (or bounding boxes) different from the sentiments of tweets in the seamless traffic areas?. According to the used research methodology, analysis techniques, and sentiment detection APIs, it has been concluded that there is no significant difference between the sentiments in the tweets regardless the prevailing traffic conditions of the locations the tweets refer to.Citation
Almohammad, A. and Georgakis, P. (2020) Public Twitter data and transport network status. 10th International Conference on Information Science and Technology (ICIST 2020), 9-15 September 2020, Bath, UK. DOI: 10.1109/ICIST49303.2020.9202204Publisher
IEEEJournal
10th International Conference on Information Science and Technology, ICIST 2020Additional Links
https://ieeexplore.ieee.org/document/9202204Type
Conference contributionLanguage
enDescription
This is an accepted manuscript of an article published by IEEE in 2020 10th International Conference on Information Science and Technology (ICIST) on 22/09/2022, available online: https://ieeexplore.ieee.org/document/9202204 The accepted version of the publication may differ from the final published version.ISSN
2573-3311ae974a485f413a2113503eed53cd6c53
10.1109/ICIST49303.2020.9202204
Scopus Count
Collections
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/