A dynamical model for the basal ganglia-thalamo-cortical oscillatory activity and its implications in Parkinson’s disease
Abstract
© 2020, The Author(s). We propose to investigate brain electrophysiological alterations associated with Parkinson’s disease through a novel adaptive dynamical model of the network of the basal ganglia, the cortex and the thalamus. The model uniquely unifies the influence of dopamine in the regulation of the activity of all basal ganglia nuclei, the self-organised neuronal interdependent activity of basal ganglia-thalamo-cortical circuits and the generation of subcortical background oscillations. Variations in the amount of dopamine produced in the neurons of the substantia nigra pars compacta are key both in the onset of Parkinson’s disease and in the basal ganglia action selection. We model these dopamine-induced relationships, and Parkinsonian states are interpreted as spontaneous emergent behaviours associated with different rhythms of oscillatory activity patterns of the basal ganglia-thalamo-cortical network. These results are significant because: (1) the neural populations are built upon single-neuron models that have been robustly designed to have eletrophysiologically-realistic responses, and (2) our model distinctively links changes in the oscillatory activity in subcortical structures, dopamine levels in the basal ganglia and pathological synchronisation neuronal patterns compatible with Parkinsonian states, this still remains an open problem and is crucial to better understand the progression of the disease.Citation
Navarro-López, E.M., Çelikok, U. & Şengör, N.S. (2020) A dynamical model for the basal ganglia-thalamo-cortical oscillatory activity and its implications in Parkinson’s disease. Cognitive Neurodynamics (2020). https://doi.org/10.1007/s11571-020-09653-yPublisher
Springer Science and Business Media LLCJournal
Cognitive NeurodynamicsAdditional Links
https://link.springer.com/article/10.1007%2Fs11571-020-09653-yType
Journal articleLanguage
enDescription
© 2020 The Authors. Published by Springer. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1007/s11571-020-09653-yISSN
1871-4080EISSN
1871-4099ae974a485f413a2113503eed53cd6c53
10.1007/s11571-020-09653-y
Scopus Count
Collections
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/