Show simple item record

dc.contributor.authorBölücü, Necva
dc.contributor.authorCan, Burcu
dc.date.accessioned2020-10-30T11:05:10Z
dc.date.available2020-10-30T11:05:10Z
dc.date.issued2021-01-07
dc.identifier.citationBölücü, N. and Can, B. (2020) Sarcasm target identification with LSTM networks, 28th IEEE 13th Signal Processing and Communications Applications Conference (SIU), 5th-7th October, 2020, Online.en
dc.identifier.issn2165-0608en
dc.identifier.doi10.1109/SIU49456.2020.9302321
dc.identifier.urihttp://hdl.handle.net/2436/623745
dc.descriptionThis is an accepted manuscript of an article published by IEEE in 28th IEEE Conference on Signal Processing and Communications Applications (SIU) (2020), available online at: https://ieeexplore.ieee.org/document/9302321 The accepted version of the publication may differ from the final published version.en
dc.description.abstractGeçmi¸s yıllarda, kinayeli metinler üzerine yapılan çalı¸smalarda temel hedef metinlerin kinaye içerip içermediginin ˘ tespit edilmesiydi. Sosyal medya kullanımı ile birlikte siber zorbalıgın yaygınla¸sması, metinlerin sadece kinaye içerip içer- ˘ mediginin tespit edilmesinin yanısıra kinayeli metindeki hedefin ˘ belirlenmesini de gerekli kılmaya ba¸slamı¸stır. Bu çalı¸smada, kinayeli metinlerde hedef tespiti için bir derin ögrenme modeli ˘ kullanılarak hedef tespiti yapılmı¸s ve elde edilen sonuçlar literatürdeki ˙Ingilizce üzerine olan benzer çalı¸smalarla kıyaslanmı¸stır. Sonuçlar, önerdigimiz modelin kinaye hedef tespitinde benzer ˘ çalı¸smalara göre daha iyi çalı¸stıgını göstermektedir. The earlier work on sarcastic texts mainly concentrated on detecting the sarcasm on a given text. With the spread of cyber-bullying with the use of social media, it becomes also essential to identify the target of the sarcasm besides detecting the sarcasm. In this study, we propose a deep learning model for target identification on sarcastic texts and compare it with other work on English. The results show that our model outperforms the related work on sarcasm target identification.en
dc.formatapplication/pdfen
dc.language.isootheren
dc.publisherIEEEen
dc.relation.urlhttp://siu2020.medipol.edu.tr/en/en
dc.subjectnatural language processingen
dc.subjectsarcasm target identificationen
dc.subjectrecurrent neural networksen
dc.subjectdeep learningen
dc.titleSarcasm target identification with LSTM networksen
dc.typeConference contributionen
dc.date.updated2020-10-23T16:33:11Z
dc.conference.name28th IEEE Conference on Signal Processing and Communications Applications
dc.conference.locationVirtual
pubs.finish-date2020-10-07
pubs.start-date2020-10-05
dc.date.accepted2020-02-20
rioxxterms.funderUniversity of Wolverhamptonen
rioxxterms.identifier.projectUOW30102020BCen
rioxxterms.versionAMen
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en
rioxxterms.licenseref.startdate2021-01-07en
refterms.dateFCD2020-10-30T11:00:27Z
refterms.versionFCDAM


Files in this item

Thumbnail
Name:
Bolucu_Can_Sarcasm_target_iden ...
Size:
447.7Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/