Sarcasm target identification with LSTM networks
dc.contributor.author | Bölücü, Necva | |
dc.contributor.author | Can, Burcu | |
dc.date.accessioned | 2020-10-30T11:05:10Z | |
dc.date.available | 2020-10-30T11:05:10Z | |
dc.date.issued | 2021-01-07 | |
dc.identifier.citation | Bölücü, N. and Can, B. (2020) Sarcasm target identification with LSTM networks, 28th IEEE 13th Signal Processing and Communications Applications Conference (SIU), 5th-7th October, 2020, Online. | en |
dc.identifier.issn | 2165-0608 | en |
dc.identifier.doi | 10.1109/SIU49456.2020.9302321 | |
dc.identifier.uri | http://hdl.handle.net/2436/623745 | |
dc.description | This is an accepted manuscript of an article published by IEEE in 28th IEEE Conference on Signal Processing and Communications Applications (SIU) (2020), available online at: https://ieeexplore.ieee.org/document/9302321 The accepted version of the publication may differ from the final published version. | en |
dc.description.abstract | Geçmi¸s yıllarda, kinayeli metinler üzerine yapılan çalı¸smalarda temel hedef metinlerin kinaye içerip içermediginin ˘ tespit edilmesiydi. Sosyal medya kullanımı ile birlikte siber zorbalıgın yaygınla¸sması, metinlerin sadece kinaye içerip içer- ˘ mediginin tespit edilmesinin yanısıra kinayeli metindeki hedefin ˘ belirlenmesini de gerekli kılmaya ba¸slamı¸stır. Bu çalı¸smada, kinayeli metinlerde hedef tespiti için bir derin ögrenme modeli ˘ kullanılarak hedef tespiti yapılmı¸s ve elde edilen sonuçlar literatürdeki ˙Ingilizce üzerine olan benzer çalı¸smalarla kıyaslanmı¸stır. Sonuçlar, önerdigimiz modelin kinaye hedef tespitinde benzer ˘ çalı¸smalara göre daha iyi çalı¸stıgını göstermektedir. The earlier work on sarcastic texts mainly concentrated on detecting the sarcasm on a given text. With the spread of cyber-bullying with the use of social media, it becomes also essential to identify the target of the sarcasm besides detecting the sarcasm. In this study, we propose a deep learning model for target identification on sarcastic texts and compare it with other work on English. The results show that our model outperforms the related work on sarcasm target identification. | en |
dc.format | application/pdf | en |
dc.language.iso | other | en |
dc.publisher | IEEE | en |
dc.relation.url | http://siu2020.medipol.edu.tr/en/ | en |
dc.subject | natural language processing | en |
dc.subject | sarcasm target identification | en |
dc.subject | recurrent neural networks | en |
dc.subject | deep learning | en |
dc.title | Sarcasm target identification with LSTM networks | en |
dc.type | Conference contribution | en |
dc.date.updated | 2020-10-23T16:33:11Z | |
dc.conference.name | 28th IEEE Conference on Signal Processing and Communications Applications | |
dc.conference.location | Virtual | |
pubs.finish-date | 2020-10-07 | |
pubs.start-date | 2020-10-05 | |
dc.date.accepted | 2020-02-20 | |
rioxxterms.funder | University of Wolverhampton | en |
rioxxterms.identifier.project | UOW30102020BC | en |
rioxxterms.version | AM | en |
rioxxterms.licenseref.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
rioxxterms.licenseref.startdate | 2021-01-07 | en |
refterms.dateFCD | 2020-10-30T11:00:27Z | |
refterms.versionFCD | AM |