A flow-based multi-agent data exfiltration detection architecture for ultra-low latency networks
Authors
Marques, Rafael SalemaEpiphaniou, Gregory
al-Khateeb, Haider
Maple, Carsten
Hammoudeh, Mohammad
De Castro, Paulo Andre Lima
Dehghantanha, Ali
Choo, Kim-Kwang Raymond
Issue Date
2021-07-16
Metadata
Show full item recordAbstract
Modern network infrastructures host converged applications that demand rapid elasticity of services, increased security and ultra-fast reaction times. The Tactile Internet promises to facilitate the delivery of these services while enabling new economies of scale for high-fdelity of machine-to-machine and human-to-machine interactions. Unavoidably, critical mission systems served by the Tactile Internet manifest high-demands not only for high speed and reliable communications but equally, the ability to rapidly identify and mitigate threats and vulnerabilities. This paper proposes a novel Multi-Agent Data Exfltration Detector Architecture (MADEX) inspired by the mechanisms and features present in the human immune system. MADEX seeks to identify data exfltration activities performed by evasive and stealthy malware that hides malicious trafc from an infected host in low-latency networks. Our approach uses cross-network trafc information collected by agents to efectively identify unknown illicit connections by an operating system subverted. MADEX does not require prior knowledge of the characteristics or behaviour of the malicious code or a dedicated access to a knowledge repository. We tested the performance of MADEX in terms of its capacity to handle real-time data and the sensitivity of our algorithm’s classifcation when exposed to malicious trafc. Experimental evaluation results show that MADEX achieved 99.97% sensitivity, 98.78% accuracy and an error rate of 1.21% when compared to its best rivals. We created a second version of MADEX, called MADEX level 2 that further improves its overall performance with a slight increase in computational complexity. We argue for the suitability of MADEX level 1 in non-critical environments, while MADEX level 2 can be used to avoid data exfltration in critical mission systems. To the best of our knowledge, this is the frst article in the literature that addresses the detection of rootkits real-time in an agnostic way using an artifcial immune system approach while it satisfes strict latency requirements.Citation
Marques, R.S., Epiphaniou, G., Al-Khateeb, H. et al. (2021) A flow-based multi-agent data exfiltration detection architecture for ultra-low latency networks, ACM Transactions on Internet Technology, 21 (4), Article Number 103. https://doi.org/10.1145/3419103Publisher
Association for Computing MachineryJournal
ACM Transactions on Internet TechnologyDOI
10.1145/3419103Additional Links
https://dl.acm.org/doi/10.1145/3419103Type
Journal articleLanguage
enDescription
This is an accepted manuscript of an article published by ACM in ACM Transactions on Internet Technology on 16/07/2021, available online: https://dl.acm.org/doi/10.1145/3419103 The accepted version of the publication may differ from the final published version.ISSN
1533-5399ae974a485f413a2113503eed53cd6c53
10.1145/3419103
Scopus Count
Collections
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/