Show simple item record

dc.contributor.authorWarraich, Annsar A
dc.contributor.authorMohammed, Afzal R
dc.contributor.authorPerrie, Yvonne
dc.contributor.authorHussain, Majad
dc.contributor.authorGibson, Hazel
dc.contributor.authorRahman, Ayesha
dc.date.accessioned2020-06-04T11:16:36Z
dc.date.available2020-06-04T11:16:36Z
dc.date.issued2020-06-02
dc.identifier.citationWarraich, A.A., Mohammed, A.R., Perrie, Y. et al. (2020) Evaluation of anti-biofilm activity of acidic amino acids and synergy with ciprofloxacin on Staphylococcus aureus biofilms. Sci Rep 10, 9021. https://doi.org/10.1038/s41598-020-66082-xen
dc.identifier.issn2045-2322en
dc.identifier.doi10.1038/s41598-020-66082-xen
dc.identifier.urihttp://hdl.handle.net/2436/623244
dc.description© 2020 The Authors. Published by Springer Nature. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1038/s41598-020-66082-xen
dc.description.abstractAcidic amino acids, aspartic acid (Asp) and glutamic acid (Glu) can enhance the solubility of many poorly soluble drugs including ciprofloxacin (Cip). One of the mechanisms of resistance within a biofilm is retardation of drug diffusion due to poor penetration across the matrix. To overcome this challenge, this work set to investigate novel counter ion approach with acidic amino acids, which we hypothesised will disrupt the biofilm matrix as well as simultaneously improve drug effectiveness. The anti-biofilm activity of D-Asp and D-Glu was studied on Staphylococcus aureus biofilms. Synergistic effect of combining D-amino acids with Cip was also investigated as a strategy to overcome anti-microbial resistance in these biofilms. Interestingly at equimolar combinations, D-Asp and D-Glu were able to significantly disperse (at 20 mM and 40 mM) established biofilms and inhibit (at 10 mM, 20 mM and 40 mM) new biofilm formation in the absence of an antibiotic. Moreover, our study confirmed L-amino acids also exhibit anti-biofilm activity. The synergistic effect of acidic amino acids with Cip was observed at lower concentration ranges (<40 mM amino acids and <90.54 µM, respectively), which resulted in 96.89% (inhibition) and 97.60% (dispersal) reduction in CFU with exposure to 40 mM amino acids. Confocal imaging indicated that the amino acids disrupt the honeycomb-like extracellular DNA (eDNA) meshwork whilst also preventing its formation.en
dc.formatapplication/pdfen
dc.languageen
dc.language.isoenen
dc.publisherSpringer Science and Business Media LLCen
dc.relation.urlhttps://www.nature.com/articles/s41598-020-66082-xen
dc.subjectantibioticsen
dc.subjectbiofilmsen
dc.titleEvaluation of anti-biofilm activity of acidic amino acids and synergy with ciprofloxacin on Staphylococcus aureus biofilmsen
dc.typeJournal articleen
dc.identifier.eissn2045-2322
dc.identifier.journalScientific Reportsen
dc.date.updated2020-06-03T15:32:53Z
dc.identifier.articlenumber9021
dc.date.accepted2020-05-15
rioxxterms.funderUniversity of Wolverhamptonen
rioxxterms.identifier.projectUOW04062020HGen
rioxxterms.versionVoRen
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0/en
rioxxterms.licenseref.startdate2020-06-04en
dc.source.volume10
dc.source.issue1
dc.description.versionPublished online
refterms.dateFCD2020-06-04T11:16:17Z
refterms.versionFCDVoR
refterms.dateFOA2020-06-04T11:16:37Z


Files in this item

Thumbnail
Name:
s41598-020-66082-x.pdf
Size:
7.346Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/