The three-dimensional velocity distribution of wide gap Taylor-Couette flow modelled by CFD
Abstract
© 2016 David Shina Adebayo and Aldo Rona. A numerical investigation is conducted for the flow between two concentric cylinders with a wide gap, relevant to bearing chamber applications. This wide gap configuration has received comparatively less attention than narrow gap journal bearing type geometries. The flow in the gap between an inner rotating cylinder and an outer stationary cylinder has been modelled as an incompressible flow using an implicit finite volume RANS scheme with the realisable k-ε model. The model flow is above the critical Taylor number at which axisymmetric counterrotating Taylor vortices are formed. The tangential velocity profiles at all axial locations are different from typical journal bearing applications, where the velocity profiles are quasilinear. The predicted results led to two significant findings of impact in rotating machinery operations. Firstly, the axial variation of the tangential velocity gradient induces an axially varying shear stress, resulting in local bands of enhanced work input to the working fluid. This is likely to cause unwanted heat transfer on the surface in high torque turbomachinery applications. Secondly, the radial inflow at the axial end-wall boundaries is likely to promote the transport of debris to the junction between the end-collar and the rotating cylinder, causing the build-up of fouling in the seal.Citation
Adebayo, D. S. and Rona, A. (2016) The Three-Dimensional Velocity Distribution of Wide Gap Taylor-Couette Flow Modelled by CFD, International Journal of Rotating Machinery, vol. 2016, Article ID 8584067. DOI: 10.1155/2016/8584067.Publisher
HindawiJournal
International Journal of Rotating MachineryType
Journal articleLanguage
enISSN
1023-621X,EISSN
1542-3034ae974a485f413a2113503eed53cd6c53
10.1155/2016/8584067
Scopus Count
Collections
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/