Literature Explorer: effective retrieval of scientific documents through nonparametric thematic topic detection
Abstract
Scientific researchers are facing a rapidly growing volume of literatures nowadays. While these publications offer rich and valuable information, the scale of the datasets makes it difficult for the researchers to manage and search for desired information efficiently. Literature Explorer is a new interactive visual analytics suite that facilitates the access to desired scientific literatures through mining and interactive visualisation. We propose a novel topic mining method that is able to uncover “thematic topics” from a scientific corpus. These thematic topics have an explicit semantic association to the research themes that are commonly used by human researchers in scientific fields, and hence are human interpretable. They also contribute to effective document retrieval. The visual analytics suite consists of a set of visual components that are closely coupled with the underlying thematic topic detection to support interactive document retrieval. The visual components are adequately integrated under the design rationale and goals. Evaluation results are given in both objective measurements and subjective terms through expert assessments. Comparisons are also made against the outcomes from the traditional topic modelling methods.Citation
Wu, S., Zhao, Y., Parvinzamir, F. et al. (2019) Literature Explorer: effective retrieval of scientific documents through nonparametric thematic topic detection, The Visual Computer (2019), 36, pp. 1337–1354. https://doi.org/10.1007/s00371-019-01721-7Publisher
Springer Science and Business Media LLCJournal
The Visual ComputerAdditional Links
https://link.springer.com/article/10.1007%2Fs00371-019-01721-7Type
Journal articleLanguage
enDescription
© 2020 The Authors. Published by Springer. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1007/s00371-019-01721-7ISSN
0178-2789EISSN
1432-2315Sponsors
This research is supported by the European Commission with project Dr Inventor (No 611383), MyHealthAvatar (No 60929), and by the UK Engineering and Physical Sciences Research Council with project MyLifeHub (EP/L023830/1).ae974a485f413a2113503eed53cd6c53
10.1007/s00371-019-01721-7
Scopus Count
Collections
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/