Semantic textual similarity with siamese neural networks
dc.contributor.author | Orasan, Constantin | |
dc.contributor.author | Mitkov, Ruslan | |
dc.contributor.author | Ranasinghe, Tharindu | |
dc.date.accessioned | 2019-09-09T09:54:13Z | |
dc.date.available | 2019-09-09T09:54:13Z | |
dc.date.issued | 2019-09-02 | |
dc.identifier.citation | Orasan, C., Mitkov, R. and Ranasinghe, T. (2019) Semantic textual similarity with siamese neural networks, RANLP 2019, 2nd-4th September 2019, Varna, Bulgaria. | en |
dc.identifier.isbn | 9789544520557 | |
dc.identifier.issn | 1313-8502 | |
dc.identifier.uri | http://hdl.handle.net/2436/622709 | |
dc.description.abstract | Calculating the Semantic Textual Similarity (STS) is an important research area in natural language processing which plays a significant role in many applications such as question answering, document summarisation, information retrieval and information extraction. This paper evaluates Siamese recurrent architectures, a special type of neural networks, which are used here to measure STS. Several variants of the architecture are compared with existing methods | en |
dc.format | application/PDF | en |
dc.language.iso | en | en |
dc.publisher | RANLP | en |
dc.relation.url | http://lml.bas.bg/ranlp2019/accepted.php | en |
dc.subject | deep learning | en |
dc.subject | nlp | en |
dc.title | Semantic textual similarity with siamese neural networks | en |
dc.type | Conference contribution | en |
dc.date.updated | 2019-09-02T23:04:18Z | |
dc.conference.name | Recent Advances in Natural Language Processing (RANLP 2019) | |
dc.conference.location | Varna, Bulgaria | |
pubs.finish-date | 2019-09-04 | |
pubs.start-date | 2019-09-02 | |
dc.date.accepted | 2019-07-06 | |
rioxxterms.funder | University of Wolverhampton | en |
rioxxterms.identifier.project | UOW090919CO | en |
rioxxterms.version | AM | en |
rioxxterms.licenseref.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
rioxxterms.licenseref.startdate | 2019-09-02 | en |
refterms.dateFCD | 2019-09-09T09:53:17Z | |
refterms.versionFCD | AM | |
refterms.dateFOA | 2019-09-09T09:54:13Z |