Investigation of the key chemical structures involved in the anticancer activity of disulfiram in A549 non-small cell lung cancer cell line
dc.contributor.author | Butcher, K | |
dc.contributor.author | Kannappan, V | |
dc.contributor.author | Kilari, RS | |
dc.contributor.author | Morris, MR | |
dc.contributor.author | McConville, C | |
dc.contributor.author | Armesilla, Angel | |
dc.contributor.author | Wang, W | |
dc.date.accessioned | 2019-07-12T10:46:53Z | |
dc.date.available | 2019-07-12T10:46:53Z | |
dc.date.issued | 2018-07-21 | |
dc.identifier.citation | Butcher, K., Kannappan, V., Kilari, R. S., Morris, M. R., McConville, C., Armesilla, A. L. and Wang, W. (2018)Investigation of the key chemical structures involved in the anticancer activity of disulfiram in A549 non-small cell lung cancer cell line, BMC Cancer (2018), 18:753. | en |
dc.identifier.pmid | 30031402 | |
dc.identifier.doi | 10.1186/s12885-018-4617-x | en |
dc.identifier.uri | http://hdl.handle.net/2436/622546 | |
dc.description.abstract | © 2018 The Author(s). Background: Disulfiram (DS), an antialcoholism medicine, demonstrated strong anticancer activity in the laboratory but did not show promising results in clinical trials. The anticancer activity of DS is copper dependent. The reaction of DS and copper generates reactive oxygen species (ROS). After oral administration in the clinic, DS is enriched and quickly metabolised in the liver. The associated change of chemical structure may make the metabolites of DS lose its copper-chelating ability and disable their anticancer activity. The anticancer chemical structure of DS is still largely unknown. Elucidation of the relationship between the key chemical structure of DS and its anticancer activity will enable us to modify DS and speed its translation into cancer therapeutics. Methods: The cytotoxicity, extracellular ROS activity, apoptotic effect of DS, DDC and their analogues on cancer cells and cancer stem cells were examined in vitro by MTT assay, western blot, extracellular ROS assay and sphere-reforming assay. Results: Intact thiol groups are essential for the in vitro cytotoxicity of DS. S-methylated diethyldithiocarbamate (S-Me-DDC), one of the major metabolites of DS in liver, completely lost its in vitro anticancer activity. In vitro cytotoxicity of DS was also abolished when its thiuram structure was destroyed. In contrast, modification of the ethyl groups in DS had no significant influence on its anticancer activity. Conclusions: The thiol groups and thiuram structure are indispensable for the anticancer activity of DS. The liver enrichment and metabolism may be the major obstruction for application of DS in cancer treatment. A delivery system to protect the thiol groups and development of novel soluble copper-DDC compound may pave the path for translation of DS into cancer therapeutics. | en |
dc.description.sponsorship | This work was supported by grant from British Lung Foundation (RG14–8) and Innovate UK (104022). | en |
dc.format | application/PDF | en |
dc.language | eng | |
dc.language.iso | en | en |
dc.publisher | Springer Nature | en |
dc.relation.url | https://bmccancer.biomedcentral.com/articles/10.1186/s12885-018-4617-x | en |
dc.rights | Licence for published version: Creative Commons Attribution 4.0 International | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Humans | en |
dc.subject | Copper | en |
dc.subject | Reactive Oxygen Species | en |
dc.subject | Ditiocarb | en |
dc.subject | Disulfiram | en |
dc.subject | Sulfhydryl Compounds | en |
dc.subject | Antineoplastic Agents | en |
dc.subject | Structure-Activity Relationship | en |
dc.subject | Neoplastic Stem Cells | en |
dc.subject | A549 Cells | en |
dc.title | Investigation of the key chemical structures involved in the anticancer activity of disulfiram in A549 non-small cell lung cancer cell line | en |
dc.type | Journal article | en |
dc.identifier.eissn | 1471-2407 | |
dc.identifier.journal | BMC Cancer | en |
dc.date.updated | 2019-06-24T15:37:41Z | |
dc.contributor.institution | Faculty of Science & Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, UK. | |
pubs.place-of-publication | England | |
dc.date.accepted | 2018-06-20 | |
rioxxterms.funder | Jisc | en |
rioxxterms.identifier.project | RG14-8 | en |
rioxxterms.identifier.project | 104022 | en |
rioxxterms.version | VoR | en |
rioxxterms.licenseref.uri | http://creativecommons.org/licenses/by/4.0/ | en |
rioxxterms.licenseref.startdate | 2019-07-12 | en |
dc.source.volume | 18 | |
dc.source.issue | 1 | |
dc.source.beginpage | 753 | |
dc.description.version | Published version | |
refterms.dateFCD | 2019-07-12T10:46:43Z | |
refterms.versionFCD | VoR | |
refterms.dateFOA | 2019-07-12T10:46:53Z |