Bridging the gap: attending to discontinuity in identification of multiword expressions
dc.contributor.author | Rohanian, Omid | |
dc.contributor.author | Taslimipoor, Shiva | |
dc.contributor.author | Kouchaki, Samaneh | |
dc.contributor.author | Ha, Le An | |
dc.contributor.author | Mitkov, Ruslan | |
dc.date.accessioned | 2019-05-28T10:55:28Z | |
dc.date.available | 2019-05-28T10:55:28Z | |
dc.date.issued | 2019-06-05 | |
dc.identifier.citation | Rohanian, O., Taslimipoor, S., Kouchaki, S., Ha, L. A. and Mitkov, R. (2019) Bridging the gap: attending to discontinuity in identification of multiword expressions, in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics, pp. 2692–2698. | en |
dc.identifier.doi | 10.18653/v1/N19-1275 | |
dc.identifier.uri | http://hdl.handle.net/2436/622369 | |
dc.description.abstract | We introduce a new method to tag Multiword Expressions (MWEs) using a linguistically interpretable language-independent deep learning architecture. We specifically target discontinuity, an under-explored aspect that poses a significant challenge to computational treatment of MWEs. Two neural architectures are explored: Graph Convolutional Network (GCN) and multi-head self-attention. GCN leverages dependency parse information, and self-attention attends to long-range relations. We finally propose a combined model that integrates complementary information from both, through a gating mechanism. The experiments on a standard multilingual dataset for verbal MWEs show that our model outperforms the baselines not only in the case of discontinuous MWEs but also in overall F-score. | en |
dc.format | application/PDF | en |
dc.format | application/PDF | en |
dc.language.iso | en | en |
dc.publisher | Association for Computational Linguistics | en |
dc.relation.url | https://naacl2019.org/ | en |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | natural language processing | en |
dc.subject | computational linguistics | en |
dc.subject | neural networks | en |
dc.subject | deep learning | en |
dc.subject | multiword expressions | en |
dc.subject | sequence tagging | en |
dc.subject | graph convolutional neural networks | en |
dc.subject | discontinuous expressions | en |
dc.subject | attention networks | en |
dc.subject | self-attention networks | en |
dc.title | Bridging the gap: attending to discontinuity in identification of multiword expressions | en |
dc.type | Conference contribution | en |
dc.conference.name | 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT) | |
pubs.finish-date | 2019-06-07 | |
pubs.place-of-publication | Minneapolis, USA | |
pubs.start-date | 2019-06-02 | |
dc.date.accepted | 2019-02-28 | |
rioxxterms.funder | University of Wolverhampton | |
rioxxterms.identifier.project | UOW280519ST | en |
rioxxterms.version | AM | en |
rioxxterms.licenseref.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
rioxxterms.licenseref.startdate | 2019-06-07 | en |
refterms.dateFCD | 2019-05-28T10:54:52Z | |
refterms.versionFCD | AM | |
refterms.dateFOA | 2019-05-28T10:55:28Z |