Show simple item record

dc.contributor.authorTaslimipoor, Shiva
dc.contributor.authorRohanian, Omid
dc.contributor.authorMitkov, Ruslan
dc.contributor.authorFazly, Afsaneh
dc.contributor.editorMarkantonatou, Stella
dc.contributor.editorRamisch, Carlos
dc.contributor.editorSavary, Agata
dc.contributor.editorVincze, Veronika
dc.date.accessioned2019-01-18T12:15:11Z
dc.date.available2019-01-18T12:15:11Z
dc.date.issued2018-10-25
dc.identifier.citationShiva Taslimipoor, Omid Rohanian, Ruslan Mitkov & Afsaneh Fazly. 2018. Identification of multiword expressions: A fresh look at modelling and evaluation. In Stella Markantonatou, Carlos Ramisch, Agata Savary & Veronika Vincze (eds.), Multiword expressions at length and in depth: Extended papers from the MWE 2017 workshop, 299– 317. Berlin: Language Science Press. DOI:10.5281/zenodo.1469569en
dc.identifier.isbn9783961101245
dc.identifier.doi10.5281/zenodo.1469569
dc.identifier.urihttp://hdl.handle.net/2436/622066
dc.descriptionAutomatic identification of Multiword Expressions (MWEs) in running text has recently received much attention among researchers in computational linguistics. The wide range of reported results for the task in the literature has prompted us to take a closer look at the algorithms and evaluation methods. For supervised classification of Verb+Noun expressions, we propose a context-based methodology in which we find word embeddings to be appropriate features. We discuss the importance of train and test splitting in validating the results and present type-aware train and test splitting. Given our specialised data, we also discuss the benefits of framing the task as classification rather than tagging.en
dc.language.isoenen
dc.publisherLanguage Science Pressen
dc.relation.urlhttp://langsci-press.org/catalog/book/204en
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectnatural language processingen
dc.subjectmultiword expressionsen
dc.subjectidiomatic expressionsen
dc.titleIdentification of multiword expressions: A fresh look at modelling and evaluationen
dc.typeChapter in book
pubs.edition1
pubs.place-of-publicationBerlin, Germany
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0/
dc.source.booktitleMultiword expressions at length and in depth: Extended papers from the MWE 2017 workshop
dc.source.beginpage299
dc.source.endpage318
refterms.dateFOA2019-01-18T12:18:01Z


Files in this item

Thumbnail
Name:
Identification of multiword ...
Size:
443.3Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States