• Automatic summarisation: 25 years On

      Orăsan, Constantin (Cambridge University Press (CUP), 2019-09-19)
      Automatic text summarisation is a topic that has been receiving attention from the research community from the early days of computational linguistics, but it really took off around 25 years ago. This article presents the main developments from the last 25 years. It starts by defining what a summary is and how its definition changed over time as a result of the interest in processing new types of documents. The article continues with a brief history of the field and highlights the main challenges posed by the evaluation of summaries. The article finishes with some thoughts about the future of the field.
    • Incorporating word embeddings in unsupervised morphological segmentation

      Üstün, Ahmet; Can, Burcu (Cambridge University Press (CUP), 2020-07-10)
      © The Author(s), 2020. Published by Cambridge University Press. We investigate the usage of semantic information for morphological segmentation since words that are derived from each other will remain semantically related. We use mathematical models such as maximum likelihood estimate (MLE) and maximum a posteriori estimate (MAP) by incorporating semantic information obtained from dense word vector representations. Our approach does not require any annotated data which make it fully unsupervised and require only a small amount of raw data together with pretrained word embeddings for training purposes. The results show that using dense vector representations helps in morphological segmentation especially for low-resource languages. We present results for Turkish, English, and German. Our semantic MLE model outperforms other unsupervised models for Turkish language. Our proposed models could be also used for any other low-resource language with concatenative morphology.
    • Transfer learning for Turkish named entity recognition on noisy text

      Kagan Akkaya, E; Can, Burcu (Cambridge University Press (CUP), 2020-01-28)
      © Cambridge University Press 2020. In this article, we investigate using deep neural networks with different word representation techniques for named entity recognition (NER) on Turkish noisy text. We argue that valuable latent features for NER can, in fact, be learned without using any hand-crafted features and/or domain-specific resources such as gazetteers and lexicons. In this regard, we utilize character-level, character n-gram-level, morpheme-level, and orthographic character-level word representations. Since noisy data with NER annotation are scarce for Turkish, we introduce a transfer learning model in order to learn infrequent entity types as an extension to the Bi-LSTM-CRF architecture by incorporating an additional conditional random field (CRF) layer that is trained on a larger (but formal) text and a noisy text simultaneously. This allows us to learn from both formal and informal/noisy text, thus improving the performance of our model further for rarely seen entity types. We experimented on Turkish as a morphologically rich language and English as a relatively morphologically poor language. We obtained an entity-level F1 score of 67.39% on Turkish noisy data and 45.30% on English noisy data, which outperforms the current state-of-art models on noisy text. The English scores are lower compared to Turkish scores because of the intense sparsity in the data introduced by the user writing styles. The results prove that using subword information significantly contributes to learning latent features for morphologically rich languages.