• Large-scale data harvesting for biographical data

      Plum, Alistair; Zampieri, Marcos; Orasan, Constantin; Wandl-Vogt, Eveline; Mitkov, R (CEUR, 2019-09-05)
      This paper explores automatic methods to identify relevant biography candidates in large databases, and extract biographical information from encyclopedia entries and databases. In this work, relevant candidates are defined as people who have made an impact in a certain country or region within a pre-defined time frame. We investigate the case of people who had an impact in the Republic of Austria and died between 1951 and 2019. We use Wikipedia and Wikidata as data sources and compare the performance of our information extraction methods on these two databases. We demonstrate the usefulness of a natural language processing pipeline to identify suitable biography candidates and, in a second stage, extract relevant information about them. Even though they are considered by many as an identical resource, our results show that the data from Wikipedia and Wikidata differs in some cases and they can be used in a complementary way providing more data for the compilation of biographies.
    • SemEval-2021 task 1: Lexical complexity prediction

      Shardlow, Matthew; Evans, Richard; Paetzold, Gustavo Henrique; Zampieri, Marcos (Association for Computational Linguistics, 2021-08-01)
      This paper presents the results and main findings of SemEval-2021 Task 1 - Lexical Complexity Prediction. We provided participants with an augmented version of the CompLex Corpus (Shardlow et al. 2020). CompLex is an English multi-domain corpus in which words and multi-word expressions (MWEs) were annotated with respect to their complexity using a five point Likert scale. SemEval-2021 Task 1 featured two Sub-tasks: Sub-task 1 focused on single words and Sub-task 2 focused on MWEs. The competition attracted 198 teams in total, of which 54 teams submitted official runs on the test data to Sub-task 1 and 37 to Sub-task 2.