Show simple item record

dc.contributor.authorAlla, Walid
dc.contributor.authorZajic, Ivan
dc.contributor.authorUddin, Kotub
dc.contributor.authorShen, Zhonghua
dc.contributor.authorMarco, James
dc.contributor.authorBurnham, Keith J.
dc.date.accessioned2018-10-31T14:25:50Z
dc.date.available2018-10-31T14:25:50Z
dc.date.issued2018-08-17
dc.identifier.citation'Design of delayed fractional state variable filter for parameter estimation of fractional nonlinear models', Nonlinear Dynamics, pp. 1-17 doi:10.1007/s11071-018-4519-0en_US
dc.identifier.issn0924-090Xen_US
dc.identifier.doi10.1007/s11071-018-4519-0
dc.identifier.urihttp://hdl.handle.net/2436/621830
dc.description.abstractThis paper presents a novel direct parameter estimation method for continuous-time fractional nonlinear models. This is achieved by adapting a filter-based approach that uses the delayed fractional state variable filter for estimating the nonlinear model parameters directly from the measured sampled input–output data. A class of fractional nonlinear ordinary differential equation models is considered, where the nonlinear terms are linear with respect to the parameters. The nonlinear model equations are reformulated such that it allows a linear estimator to be used for estimating the model parameters. The required fractional time derivatives of measured input–output data are computed by a proposed delayed fractional state variable filter. The filter comprises of a cascade of all-pass filters and a fractional Butterworth filter, which forms the core part of the proposed parameter estimation method. The presented approaches for designing the fractional Butterworth filter are the so-called, square root base and compartmental fractional Butterworth design. According to the results, the parameters of the fractional-order nonlinear ordinary differential model converge to the true values and the estimator performs efficiently for the output error noise structure.en_US
dc.formatapplication/PDFen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.urlhttps://link.springer.com/article/10.1007/s11071-018-4519-0en_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectDelayed fractional state variable filteren_US
dc.subjectFractional Butterworth filteren_US
dc.subjectFractional nonlinear systemen_US
dc.subjectParameter estimationen_US
dc.subjectDelay equalisationen_US
dc.subjectSquare root baseen_US
dc.subjectCompartmentalen_US
dc.titleDesign of delayed fractional state variable filter for parameter estimation of fractional nonlinear modelsen_US
dc.typeJournal article
dc.identifier.journalNonlinear Dynamicsen_US
dc.date.accepted2018-08-09
rioxxterms.funderUniversity of Wolverhampton
rioxxterms.identifier.projectUOW311018KBen_US
rioxxterms.versionAMen_US
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
rioxxterms.licenseref.startdate2019-08-17en_US
dc.source.volume94
dc.source.issue4
dc.source.beginpage2697
dc.source.endpage2713
refterms.dateFCD2018-10-31T14:25:50Z
refterms.versionFCDAM
atmire.accessrights


Files in this item

Thumbnail
Name:
Revised_Version.pdf
Size:
1.493Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States