α-catenin structure and nanoscale dynamics in solution and in complex with f-actin
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Nicholl, IainMatsui, Tsutomu
Weiss, Thomas M
Stanley, Christopher B
Heller, William T
Martel, Anne
Farago, Bela
Callaway, David JE
Bu, Zimei
Issue Date
2018-07-11
Metadata
Show full item recordAbstract
As a core component of the adherens junction, α-catenin stabilizes the cadherin/catenin complexes to the actin cytoskeleton for the mechanical coupling of cell-cell adhesion. α-catenin also modulates actin dynamics, cell polarity, and cell-migration functions that are independent of the adherens junction. We have determined the solution structures of the α-catenin monomer and dimer using in-line size-exclusion chromatography small-angle X-ray scattering, as well as the structure of α-catenin dimer in complex to F-actin filament using selective deuteration and contrast-matching small angle neutron scattering. We further present the first observation, to our knowledge, of the nanoscale dynamics of α-catenin by neutron spin-echo spectroscopy, which explicitly reveals the mobile regions of α-catenin that are crucial for binding to F-actin. In solution, the α-catenin monomer is more expanded than either protomer shown in the crystal structure dimer, with the vinculin-binding M fragment and the actin-binding domain being able to adopt different configurations. The α-catenin dimer in solution is also significantly more expanded than the dimer crystal structure, with fewer interdomain and intersubunit contacts than the crystal structure. When in complex to F-actin, the α-catenin dimer has an even more open and extended conformation than in solution, with the actin-binding domain further separated from the main body of the dimer. The α-catenin-assembled F-actin bundle develops into an ordered filament packing arrangement at increasing α-catenin/F-actin molar ratios. Together, the structural and dynamic studies reveal that α-catenin possesses dynamic molecular conformations that prime this protein to function as a mechanosensor protein.Citation
Nicholl, ID., Matsui, T., Weiss, TM., Stanley, CB., Heller, WT., Martel, A., Farago, B., Callaway, DJE., Bu, Z. (2018) 'α-Catenin Structure and Nanoscale Dynamics in Solution and in Complex with F-Actin', Biophysical Journal, 115 (4) pp. 642-654 doi: 10.1016/j.bpj.2018.07.005Publisher
ElsevierJournal
Biophysical JournalAdditional Links
https://www.sciencedirect.com/science/article/pii/S0006349518307690Type
Journal articleLanguage
enISSN
0006-3495Sponsors
This research was funded by National Science Foundation grant MCB- 1817684 to Z.B. and 2G12 RR003060 from the National Center for Research Resources to City College of New York. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the Department of Energy Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). A portion of the research conducted at Oak Ridge National Laboratory’s Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. I.D.N. acknowledges the support of the ILL for costs for travel and subsistence.ae974a485f413a2113503eed53cd6c53
10.1016/j.bpj.2018.07.005
Scopus Count
Collections
The following licence applies to the copyright and re-use of this item:
- Creative Commons
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/