• Admin Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WIRECommunitiesTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisherThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisher

    Administrators

    Admin Login

    Local Links

    AboutThe University LibraryOpen Access Publications PolicyDeposit LicenceCOREWIRE Copyright and Reuse Information

    Statistics

    Display statistics

    Metformin as a potential therapy for malignant astrocytoma

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Eagles PhD Thesis.pdf
    Size:
    8.835Mb
    Format:
    PDF
    Download
    Authors
    Eagles, Lawrence
    Issue Date
    2018
    
    Metadata
    Show full item record
    Abstract
    Background Glioblastoma Multiforme (GBM) is the most commonly occurring tumour of the central nervous system (CNS). Currently GBM is considered an incurable malignancy with patients experiencing abysmal life expectancies. Lack of progress in the discovery of novel treatments has led to the repurposing of existing licenced medication as a possible alternative option. Metformin is from the biguanide family of drugs and is the most common medication used in the treatment of type 2 diabetes. Clinical studies have reported that, in type 2 diabetic patients, metformin might reduce cancer incidence and severity. Currently, metformin is being assessed in clinical trials as a treatment for a range of cancer types including GBM. The antineoplastic mechanisms utilized by metformin and other biguanides have not been fully elucidated. Methods The effects of metformin were evaluated, alone and in combination with other agents, on a panel of GBM cell cultures. Functional analysis of metformin mechanism of action was assessed through measurement of apoptosis, depolarisation of the mitochondria membrane, caspase pathway activation, cell cycle progression and the expression levels of micoRNAs. Results Analysis of fourteen GBM cell cultures showed a cytotoxic response to metformin that was significantly linked to the P53 status (p=0.0024). In combination drug testing, one of the four drugs showed a synergistic pairing with metformin. The kinase inhibitor sorafenib, showed synergism (CI ≤ 1) in eight GBM cell cultures. Flow cytometry of metformin treated GBM cells showed no significant increase (p>0.005) in apoptotic cell populations. Caspase 3/7 levels showed no significant increase post metformin treatment (p>0.005). Metformin caused depolarisation of the mitochondrial membrane in six GBM cell cultures. Four microRNAs were shown to have expression levels changes post-metformin treatment. Upregulation of expression was identified in miR-140, miR-192, let-7c. Downregulation was identified in miR-222. Conclusions Metformin was shown to have cytotoxic effect on a GBM cell cultures and has potential as GBM therapeutic agent and possible treatment synergy with sorafenib. The significance of P53 status to metformin sensitivity may suggest that its use should be directed to a sub-set of GBM patients. Mechanism for cell death by metformin was shown not to rely on apoptotic pathways but caspase 3/7 independent depolarization of mitochondrial cell membranes and cell cycle arrest. Investigations into autophagy may help to further define the pathways metformin is utilising to promote cell death. The impact of metformin on the expression profile of miR-222, miR-192 and let-7c is in line with clinical studies of other cancer types. This shows possible insight into the cancer independent actions of metformin. The interplay recorded between glucose availability and cell death indicates a possible key factor in the utilisation of metformin as a therapeutic agent. This finding may warrant the addition of dietary control regimes in clinical trials to maximise metformin efficacy. This work highlights the strong potential for biguanides in the development of new drug treatments and in expanding our knowledge of cancer metabolism.
    URI
    http://hdl.handle.net/2436/621724
    Type
    Thesis or dissertation
    Language
    en
    Description
    A thesis submitted in fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.