Show simple item record

dc.contributor.authorColas, David
dc.contributor.authorLaussy, Fabrice P.
dc.contributor.authorDavis, Matthew J.
dc.date.accessioned2018-09-27T08:52:29Z
dc.date.available2018-09-27T08:52:29Z
dc.date.issued2018-07-31
dc.identifier.issn0031-9007
dc.identifier.issn1079-7114
dc.identifier.doi10.1103/PhysRevLett.121.055302
dc.identifier.urihttp://hdl.handle.net/2436/621719
dc.description.abstractNegative effective masses can be realized by engineering the dispersion relation of a variety of quantum systems. A recent experiment with spin-orbit coupled Bose-Einstein condensates has shown that a negative effective mass can halt the free expansion of the condensate and lead to fringes in the density [M. A. Khamehchi et al., Phys. Rev. Lett. 118, 155301 (2017)]. Here, we show that the underlying cause of these observations is the self-interference of the wave packet that arises when only one of the two effective mass parameters that characterize the dispersion of the system is negative. We show that spin-orbit coupled Bose-Einstein condensates may access regimes where both mass parameters controlling the propagation and diffusion of the condensate are negative, which leads to the novel phenomenon of counterpropagating self-interfering packets.
dc.description.sponsorshipEU project polaflow
dc.language.isoen
dc.publisherAPS
dc.relation.urlhttps://link.aps.org/doi/10.1103/PhysRevLett.121.055302
dc.subjectPolaritons
dc.subjectnegative mass
dc.subjectkinematics
dc.subjectBEC
dc.subjectSOCBEC
dc.titleNegative-mass effects in spin-orbit coupled Bose-Einstein condensates
dc.typeJournal article
dc.identifier.journalPhysical Review Letters
dc.date.accepted2018-07-01
dc.source.journaltitlePhysical Review Letters
dc.source.volume121
dc.source.issue5
refterms.dateFOA2019-03-08T14:42:48Z


Files in this item

Thumbnail
Name:
Colas_et_al_Negative-mass_effe ...
Size:
2.723Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record