Show simple item record

dc.contributor.authorSanchez Munoz, Carlos
dc.contributor.authorLaussy, Fabrice P.
dc.contributor.authorValle, Elena del
dc.contributor.authorTejedor, Carlos
dc.contributor.authorGonzalez-Tudela, Alejandro
dc.date.accessioned2018-09-25T15:58:35Z
dc.date.available2018-09-25T15:58:35Z
dc.date.issued2018-01-08
dc.identifier.citationSánchez Muñoz, C., Laussy, F. P., Del Valle, E., Tejedor, C. and González-Tudela, A. (2018) Filtering multiphoton emission from state-of the-art cavity quantum electrodynamics, Optica, 5(1), pp. 14-26.
dc.identifier.issn2334-2536
dc.identifier.doi10.1364/OPTICA.5.000014
dc.identifier.urihttp://hdl.handle.net/2436/621716
dc.description© 2018 The Authors. Published by Optical Society of America. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1364/OPTICA.5.000014
dc.description.abstractEngineering multiphoton states is an outstanding challenge with applications in multiple fields such as quantum metrology, quantum lithography, or even biological sensing. State-of-the-art methods to obtain them rely on post-selection, multi-level systems, or Rydberg atomic ensembles. Recently, it was shown that a strongly driven two-level system interacting with a detuned cavity mode can be engineered to continuously emit 𝑛-photon states. In the present work, we show that spectral filtering of its emission relaxes considerably the requirements on the system parameters even to the more accessible bad-cavity situation, opening up the possibility of implementing this protocol in a much wider landscape of different platforms. This improvement is based on a key observation: in the imperfect case where only a certain fraction of emission is composed of 𝑛-photon states, these have a well-defined energy separated from the rest of the signal, which allows one to reveal and purify multiphoton emission just by frequency filtering. We demonstrate these results by obtaining analytical expressions for the relevant figures of merit of multiphoton emission, such as the 𝑛-photon coupling rate between cavity and emitter, the fraction of light emitted as 𝑛-photon states, and 𝑛-photon emission rates. This allows us to make a systematic study of such figures of merit as a function of the system parameters and demonstrate the viability of the protocol in several relevant types of cavity quantum electrodynamics setups, where we take into account the impact of their respective experimental limitations.
dc.formatapplication/PDF
dc.language.isoen
dc.publisherOSA
dc.relation.urlhttps://www.osapublishing.org/optica/abstract.cfm?uri=optica-5-1-14
dc.subjectCavity QED
dc.subjectphotonics
dc.subjectquantum light
dc.titleFiltering multiphoton emission from state-of the-art cavity quantum electrodynamics
dc.typeJournal article
dc.identifier.journalOptica
dc.date.accepted2017-10-31
rioxxterms.funderUniversity of Wolverhampton
rioxxterms.identifier.projectUOW25092018FL3
rioxxterms.versionVoR
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by-nc/4.0/
rioxxterms.licenseref.startdate2018-09-25
dc.source.volume5
dc.source.issue1
dc.source.beginpage14
dc.source.endpage26
refterms.dateFCD2018-09-25T15:58:36Z
refterms.versionFCDVoR
refterms.dateFOA2019-01-08T00:00:00Z


Files in this item

Thumbnail
Name:
optica-5-1-14.pdf
Size:
1.826Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc/4.0/