The microbial production of polyhydroxyalkanoates from waste polystyrene fragments attained using oxidative degradation
Authors
Johnston, BrianRadecka, Iza
Hill, David
Chiellini, Emo
Ilieva, Vassilka Ivanova
Sikorska, Wanda
Musioł , Marta
Zięba, Magdalena
Marek, Adam A.
Keddie, Daniel
Mendrek, Barbara
Darbar, Surila
Adamus, Grazyna
Kowalczuk , Marek
Issue Date
2018-08-29
Metadata
Show full item recordAbstract
Excessive levels of plastic waste in our oceans and landfills indicate that there is an abundance of potential carbon sources with huge economic value being neglected. These waste plastics, through biological fermentation, could offer alternatives to traditional petrol-based plastics. Polyhydroxyalkanoates (PHAs) are a group of plastics produced by some strains of bacteria that could be part of a new generation of polyester materials that are biodegradable, biocompatible, and, most importantly, non-toxic if discarded. This study introduces the use of prodegraded high impact and general polystyrene (PS0). Polystyrene is commonly used in disposable cutlery, CD cases, trays, and packaging. Despite these applications, some forms of polystyrene PS remain financially and environmentally expensive to send to landfills. The prodegraded PS0 waste plastics used were broken down at varied high temperatures while exposed to ozone. These variables produced PS flakes (PS1–3) and a powder (PS4) with individual acid numbers. Consequently, after fermentation, different PHAs and amounts of biomass were produced. The bacterial strain, Cupriavidus necator H16, was selected for this study due to its well-documented genetic profile, stability, robustness, and ability to produce PHAs at relatively low temperatures. The accumulation of PHAs varied from 39% for prodegraded PS0 in nitrogen rich media to 48% (w/w) of dry biomass with the treated PS. The polymers extracted from biomass were analyzed using nuclear magnetic resonance (NMR) and electrospray ionization tandem mass spectrometry (ESI-MS/MS) to assess their molecular structure and properties. In conclusion, the PS0–3 specimens were shown to be the most promising carbon sources for PHA biosynthesis; with 3-hydroxybutyrate and up to 12 mol % of 3-hydroxyvalerate and 3-hydroxyhexanoate co-monomeric units generated.Citation
Johnston, B., Radecka, I., Hill, D., Chiellini, E., Ilieva, VI., Sikorska, W., Musioł, M., Zięba, M., Marek, AA., Keddie, D., Mendrek, B., Darbar, S., Adamus, G., Kowalczuk, M. (2018) 'The Microbial Production of Polyhydroxyalkanoates from Waste Polystyrene Fragments Attained Using Oxidative Degradation' Polymers, 10(9), 957Publisher
MDPIJournal
PolymersAdditional Links
https://www.mdpi.com/2073-4360/10/9/957Type
Journal articleLanguage
enDescription
© 2018 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/polym10090957ISSN
2073-4360ae974a485f413a2113503eed53cd6c53
10.3390/polym10090957
Scopus Count
Collections
The following licence applies to the copyright and re-use of this item:
- Creative Commons
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/