Show simple item record

dc.contributor.authorOgbomo, Osarumen O.
dc.contributor.authorAmalu, Emeka H.
dc.contributor.authorEkere, N.N.
dc.contributor.authorOlagbegi, P.O.
dc.date.accessioned2018-07-30T14:32:47Z
dc.date.available2018-07-30T14:32:47Z
dc.date.issued2018-06-22
dc.identifier.citationVolume 170, August 2018, Pages 682-693
dc.identifier.issn0038-092X
dc.identifier.doi10.1016/j.solener.2018.06.007
dc.identifier.urihttp://hdl.handle.net/2436/621539
dc.description.abstractAccelerated degradation of solder joint interconnections in crystalline silicon photovoltaic (c-Si PV) modules drives the high failure rate of the system operating in elevated temperatures. The phenomenon challenges the thermo-mechanical reliability of the system for hot climatic operations. This study investigates the degradation of solder interconnections in c-Si PV modules for cell temperature rise from 25 °C STC in steps of 1 °C to 120 °C. The degradation is measured using accumulated creep strain energy density (Wacc). Generated Wacc magnitudes are utilised to predict the fatigue life of the module for ambient temperatures ranging from European to hot climates. The ANSYS mechanical package coupled with the IEC 61,215 standard accelerated thermal cycle (ATC) profile is employed in the simulation. The Garofalo creep model is used to model the degradation response of solder while other module component materials are simulated with appropriate material models. Solder degradation is found to increase with every 1 °C cell temperature rise from the STC. Three distinct degradation rates in Pa/°C are observed. Region 1, 25 to 42 °C, is characterised by degradation rate increasing quadratically from 1.53 to 10.03 Pa/°C. The degradation rate in region 2 ,43 to 63 °C, is critical with highest constant magnitude of 12.06 Pa/°C. Region 3, 64 to 120 °C, demonstrates lowest degradation rate of logarithmic nature with magnitude 5.47 at the beginning of the region and 2.25 Pa/°C at the end of the region. The module fatigue life, L (in years) is found to decay according to the power function L = 721.48T−1.343. The model predicts module life in London and hot climate to be 18.5 and 9 years, respectively. The findings inform on the degradation of c-Si PV module solder interconnections in different operating ambient temperatures and advise on its operational reliability for improved thermo-mechanical design for hot climatic operations.
dc.formatapplication/PDF
dc.language.isoen
dc.publisherElsevier
dc.relation.urlhttps://www.sciencedirect.com/science/article/pii/S0038092X18305462
dc.subjectSolder joint degradation
dc.subjectHot temperature climates
dc.subjectOperating temperature
dc.subjectAmbient temperature
dc.subjectPV reliability
dc.subjectPV solder joints
dc.subjectAccelerated degradation
dc.subjectAccumulated strain energy
dc.subjectCell temperature
dc.subjectFatigue life
dc.titleEffect of operating temperature on degradation of solder joints in crystalline silicon photovoltaic modules for improved reliability in hot climates
dc.typeJournal article
dc.identifier.journalSolar Energy
dc.date.accepted2018-06-01
rioxxterms.funderUniversity of Wolverhampton
rioxxterms.identifier.projectUOW30072018NE
rioxxterms.versionAM
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
rioxxterms.licenseref.startdate2019-06-22
dc.source.volume170
dc.source.beginpage682
dc.source.endpage693
refterms.dateFCD2018-07-30T14:32:48Z
refterms.versionFCDAM
refterms.dateFOA2018-11-01T13:28:55Z


Files in this item

Thumbnail
Name:
Publisher version
Thumbnail
Name:
Effects of operating temperatu ...
Size:
787.6Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record