• Admin Login
    View Item 
    •   Home
    • Faculty of Science and Engineering
    • Faculty of Science and Engineering
    • View Item
    •   Home
    • Faculty of Science and Engineering
    • Faculty of Science and Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WIRECommunitiesTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisherThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisher

    Administrators

    Admin Login

    Local Links

    AboutThe University LibraryOpen Access Publications PolicyDeposit LicenceCOREWIRE Copyright and Reuse Information

    Statistics

    Display statistics

    Mechanics of Adhesion Through Nanolayers of Liquid

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Kendall, K.
    Rossetto, H.
    Dhir, A.
    Yong, C. W.
    Issue Date
    2011-12
    
    Metadata
    Show full item record
    Abstract
    The adhesion of a fine probe to a smooth oxide surface covered with a few layers of liquid molecules is considered by molecular modelling and also by experiment. A modified DL_POLY 2.19 computer code was applied to a magnesium oxide pyramidal probe approaching a plane MgO surface, calculating the equilibrium attractive force as a function of the gap between the surfaces. For clean MgO, there was a jump to contact and strong adhesion force. Detachment of the MgO probe could not be achieved and plastic flow of the probe was observed during pull-off. Contamination of the crystal surfaces by other molecules showed two major changes in the mechanism of adhesion. Firstly, the adhesion was much reduced as indicated by the obscuration of the jump to contact and the ease of detachment of the contaminated probe. Secondly, the contaminant molecules formed ordered layers on the MgO surfaces and each layer had to be squeezed out in a stepwise motion. The final layer could not be removed by normal pressure. Experiments using atomic force microscopy showed that these steps could not be detected in water because of the small size of the molecule and the compliance of the probe. But experiments with larger molecules such as polyacrylate and nanoparticles like gold did reveal periodic attractions and repulsions supporting the layering theory.
    Citation
    Mechanics of Adhesion Through Nanolayers of Liquid 2012, 88 (1):108 The Journal of Adhesion
    Publisher
    Taylor and Francis
    Journal
    The Journal of Adhesion
    URI
    http://hdl.handle.net/2436/621451
    DOI
    10.1080/00218464.2011.611094
    Additional Links
    http://www.tandfonline.com/doi/abs/10.1080/00218464.2011.611094
    Type
    Journal article
    Language
    en
    ISSN
    0021-8464
    1545-5823
    ae974a485f413a2113503eed53cd6c53
    10.1080/00218464.2011.611094
    Scopus Count
    Collections
    Faculty of Science and Engineering

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.