• Admin Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WIRECommunitiesTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisherThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisher

    Administrators

    Admin Login

    Local Links

    AboutThe University LibraryOpen Access Publications PolicyDeposit LicenceCOREWIRE Copyright and Reuse Information

    Statistics

    Display statistics

    The Role of a Deglycating Enzyme ‘Fructosamine-3-Kinase’ in Diabetes and COPD.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Alderawi PhD Thesis.pdf
    Size:
    2.980Mb
    Format:
    PDF
    Download
    Authors
    Alderawi, Amr Saleh
    Issue Date
    2017-10-31
    
    Metadata
    Show full item record
    Abstract
    Recent statistics show that approximately 415 million people worldwide have diabetes. Glycated haemoglobin (HbA1c) measurements were introduced many years ago as the gold standard tool for detecting and monitoring treatment as well as making management decisions for diabetic patients. Glycated haemoglobins are formed by the non-enzymatic glycation of haemoglobin molecules. This non-enzymatic glycation process has been strongly related to pathogenesis of chronic complications associated to diabetes. It was suggested that this glycation process may be moderated by an enzymatic deglycation process thought to involve a deglycating enzyme known as Fructosamine-3-kinase (FN3K), an enzyme that deglycates the glycated haemoglobin in erythrocytes and other glycated proteins in other tissues. FN3K acts through phosphorylation of fructosamines on the third carbon of their sugar moiety, making them unstable and consequently causing them to detach from the protein. The degree of deglycation is thought to depend on the activity of the FN3K enzyme. Moreover, variation in the activity of FN3K between individuals is hypothesised to lead to apparent differences in glycated haemoglobin levels: some individuals have high rates of deglycation so that they tend to have lower average glycaemia than actually the case, while others with low rates of deglycation appear to have higher than actual glycaemia (known as the glycation gap, G-gap). The G-gap has been reported to be associated with alteration of diabetic complications risk. The G-gap reflects the discrepancy between average glycaemia as determined from glycated haemoglobin (measured as HbA1c) and that from the determination of fructosamine. The positive G-gap is defined as a higher level of glycation of proteins than expected whereas a negative G-gap means a lower level of glycation than expected. To explore the role of FN3K in diabetes and other associated morbidities, we decided to divide our research into 3 studies. Each study was categorised according to the type and the source of samples involved. The first study explored the correlation between FN3K activity and protein level with G-gap data; it involved 148 diabetic patients who were recruited at New Cross Hospital, Wolverhampton, selected as having a consistent positive G-gap > +0.5 and a consistent negative G-gap > -0.5 over a minimum of 2 estimations. Age, gender, race and BMI were collected from patients in this study. Blood samples were also 3 collected to measure FN3K activity, protein levels, and markers of CVD in relation to G-gap. The second study involved 23 AECOPD patients who were recruited from St George’s Hospital (London) and were treated with either metformin or a placebo. Serum samples were collected from these patients for a larger study: we assayed those 23 serum samples for FN3K protein levels to explore any possible correlation between FN3K with metformin therapy in COPD patients. The third study utilised 36 human peripheral lung samples from healthy individuals, asymptomatic smokers and stable COPD patients (GOLD 2) who were recruited at The Section of Respiratory Medicine, University Hospital of Ferrara, Italy. Those samples were assessed for FN3K expression by means of immunohistochemistry to explore the difference in FN3K activity between those three categories. It was found that the intracellular activity and protein expression of the FN3K enzyme in diabetic patients negatively correlated with the values of G-gaps where FN3K activity was high in patients with negative G-gap. FN3K serum protein levels were shown to be enhanced with metformin administration in COPD diabetic patients, suggesting a protective role for FN3K enzyme against protein damaged caused by the non-enzymatic glycation of proteins. Therefore, patients with positive G-gap have lower FN3K activity than those with negative G-gap, and in turn they are more susceptible to diabetes related complications. Our data also indicate that metformin has a beneficial effect in reducing damage caused by carbonyl stress from cigarette smoking in COPD patients by the action of FN3K. Our research has demonstrated that FN3K contributes to the protein repair system which protects against damage caused by non-enzymatic glycation. The high activity for the FN3K enzyme was associated with low levels of AGEs and low carbonyl stress levels in observed among patients with diabetes and COPD. In contrast, COPD patients tend to have low FN3K-mediated protection against protein damage in comparison to the normal population. These patients tend to be at risk for developing more complications, particularly CVD complications, than normal, healthy individuals. Treatment with metformin enhances FN3K action in COPD diabetic patients, possibly as a protective enzyme against the damaged caused by the non-enzymatic glycation.
    URI
    http://hdl.handle.net/2436/620816
    Type
    Thesis or dissertation
    Language
    en
    Description
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for degree of Doctor of Philosophy.
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.