• Admin Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WIRECommunitiesTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisherThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisher

    Administrators

    Admin Login

    Local Links

    AboutThe University LibraryOpen Access Publications PolicyDeposit LicenceCOREWIRE Copyright and Reuse Information

    Statistics

    Display statistics

    A NOVEL SELECTIVE INHIBITOR FOR PLASMA MEMBRANE CALCIUM ATPase 4 IMPROVES VEGF-MEDIATED ANGIOGENESIS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Kurusamy PhD Thesis.pdf
    Size:
    3.703Mb
    Format:
    PDF
    Download
    Authors
    Kurusamy, Sathishkumar
    Issue Date
    2017-10-02
    
    Metadata
    Show full item record
    Abstract
    Ischaemic cardiovascular diseases are the leading cause of death worldwide. Therapeutic angiogenesis provides a valuable tool to treat these conditions by stimulating the growth of new blood vessels in the ischaemic tissue. The pro-angiogenic factor VEGF is the most potent inducer of angiogenesis, and exogenous delivery of VEGF has been a key element of therapeutic strategies. Unfortunately, VEGF-based pro-angiogenic procedures have produced only limited patient benefit. Failure to restore efficient VEGF activity remains a major problem. VEGF-mediated activation of the calcineurin/NFAT signalling pathway has been identified as a crucial regulator of angiogenesis. Our laboratory has recently shown a novel role for the plasma membrane calcium ATPase 4 (PMCA4) protein as a negative regulator of VEGF-induced angiogenesis via interaction with calcineurin. The recent identification of aurintricarboxylic acid (ATA) as a selective inhibitor of PMCA4 prompted us to hypothesise that inhibition of PMCA4 with ATA should enhance VEGF-induced angiogenesis. Here, we show that treatment of endothelial cells with nanomolar concentrations of ATA notably enhances calcineurin/NFAT signalling by disrupting the PMCA4/calcineurin interaction. ATA mediated inhibition of PMCA4 results in a significant increase in endothelial cell motility and in vitro and in vivo blood vessel formation. Low concentrations of ATA do not have any deleterious effects on the viability of endothelial cells or zebrafish embryonic development. However, high ATA concentrations impaired endothelial cell viability, and were associated with toxicity in zebrafish embryos. This study highlights the potential of targeting PMCA4 to improve VEGF-based pro-angiogenic therapeutic strategies. This goal will require the development of refined versions of ATA without associated toxicity, or the identification of novel PMCA4 inhibitors.
    URI
    http://hdl.handle.net/2436/620714
    Type
    Thesis or dissertation
    Language
    en
    Description
    A thesis submitted in fulfilment of the requirement of the University of Wolverhampton for the degree of Doctor of Philosophy.
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.