• Admin Login
    View Item 
    •   Home
    • Faculty of Science and Engineering
    • Faculty of Science and Engineering
    • View Item
    •   Home
    • Faculty of Science and Engineering
    • Faculty of Science and Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WIRECommunitiesTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisherThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisher

    Administrators

    Admin Login

    Local Links

    AboutThe University LibraryOpen Access Publications PolicyDeposit LicenceCOREWIRE Copyright and Reuse Information

    Statistics

    Display statistics

    Evaluation of thermo-mechanical damage and fatigue life of solar cell solder interconnections

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Publisher version
    View Source
    Access full-text PDFOpen Access
    View Source
    Check access options
    Check access options
    Thumbnail
    Name:
    Musa Zarmai Evaluation of ...
    Size:
    945.8Kb
    Format:
    PDF
    Download
    Authors
    Zarmai, Musa T.
    Ekere, N.N.
    Oduoza, C.F.
    Amalu, Emeka H.
    Issue Date
    2016-12-31
    
    Metadata
    Show full item record
    Abstract
    The soldering process of interconnecting crystalline silicon solar cells to form photovoltaic (PV) module is a key manufacturing process. However, during the soldering process, stress is induced in the solar cell solder joints and remains in the joint as residual stress after soldering. Furthermore, during the module service life time, thermo-mechanical degradation of the solder joints occurs due to thermal cycling of the joints which induce stress, creep strain and strain energy. The resultant effect of damage on the solder joint is premature failure, hence shortened fatigue life. This study seeks to determine accumulated thermo-mechanical damage and fatigue life of solder interconnection in solar cell assembly under thermo-mechanical cycling conditions. In this investigation, finite element modelling (FEM) and simulations are carried out in order to determine nonlinear degradation of SnAgCu solder joints. The degradation of the solder material is simulated using Garofalo-Arrhenius creep model. A three dimensional (3D) geometric model is subjected to six accelerated thermal cycles (ATCs) utilising IEC 61215 standard for photovoltaic panels. The results demonstrate that induced stress, strain and strain energy impacts the solder joints during operations. Furthermore, the larger the accumulated creep strain and creep strain energy in the joints, the shorter the fatigue life. This indicates that creep strain and creep strain energy in the solder joints significantly impacts the thermo-mechanical reliability of the assembly joints. Regions of solder joint with critical stress, strain and strain energy values including their distribution are determined. Analysis of results demonstrates that creep energy density is a better parameter than creep strain in predicting interconnection fatigue life. The use of six ATCs yields significant data which enable better understanding of the response of the solder joints to the induced loads. Moreover, information obtained from this study can be used for improved design and better-quality fabrication of solder interconnections in solar cell assembly for enhanced thermo-mechanical reliability.
    Citation
    Zarmai, MT., Ekere, NN., Oduoza, C.F., Amalu, EH.(2017) 'Evaluation of thermo-mechanical damage and fatigue life of solar cell solder interconnections', Robotics and Computer-Integrated Manufacturing, 47 (October 2017), pp. 37-43
    Publisher
    Elsevier
    Journal
    Robotics and Computer-Integrated Manufacturing
    URI
    http://hdl.handle.net/2436/620535
    DOI
    10.1016/j.rcim.2016.12.008
    Additional Links
    http://linkinghub.elsevier.com/retrieve/pii/S0736584515301435
    Type
    Journal article
    Language
    en
    ISSN
    0736-5845
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.rcim.2016.12.008
    Scopus Count
    Collections
    Faculty of Science and Engineering

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.