• First observation of the quantized exciton-polariton field and effect of interactions on a single polariton.

      Cuevas, Álvaro; López Carreño, Juan Camilo; Silva, Blanca; De Giorgi, Milena; Suárez-Forero, Daniel G; Sánchez Muñoz, Carlos; Fieramosca, Antonio; Cardano, Filippo; Marrucci, Lorenzo; Tasco, Vittorianna; et al. (AAAS, 2018-04-20)
      Polaritons are quasi-particles that originate from the coupling of light with matter and that demonstrate quantum phenomena at the many-particle mesoscopic level, such as Bose-Einstein condensation and superfluidity. A highly sought and long-time missing feature of polaritons is a genuine quantum manifestation of their dynamics at the single-particle level. Although they are conceptually perceived as entangled states and theoretical proposals abound for an explicit manifestation of their single-particle properties, so far their behavior has remained fully accounted for by classical and mean-field theories. We report the first experimental demonstration of a genuinely quantum state of the microcavity polariton field, by swapping a photon for a polariton in a two-photon entangled state generated by parametric downconversion. When bringing this single-polariton quantum state in contact with a polariton condensate, we observe a disentangling with the external photon. This manifestation of a polariton quantum state involving a single quantum unlocks new possibilities for quantum information processing with interacting bosons.