• Admin Login
    View Item 
    •   Home
    • Research Institute in Healthcare Science
    • Research Institute in Healthcare Science
    • View Item
    •   Home
    • Research Institute in Healthcare Science
    • Research Institute in Healthcare Science
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WIRECommunitiesTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisherThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisher

    Administrators

    Admin Login

    Local Links

    AboutThe University LibraryOpen Access Publications PolicyDeposit LicenceCOREWIRE Copyright and Reuse Information

    Statistics

    Display statistics

    Crystal engineering of ibuprofen using starch derivatives in crystallization medium to produce promising ibuprofen with improved pharmaceutical performance

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Nokhodchi, Ali
    Homayouni, Alireza
    Araya, Ruta
    Kaialy, Waseem
    Obeidat, Wasfy
    Asare-Addo, Kofi
    Issue Date
    2015
    
    Metadata
    Show full item record
    Abstract
    Ibuprofen exhibits poor flow, poor compaction and dissolution behaviour, and it is prone to capping after ejection from the die. Therefore, the aim of the present research was to engineer ibuprofen crystals in the presence of two disintegrants (starch and sodium starch glycolate) in order to improve its flow, compactibility and dissolution behaviour simultaneously. To this end ibuprofen and different concentrations of disintegrant (0.25 to 10% w/w in case of starch and 0.25 to 7% w/w in case of sodium starch glycolate) were dissolved in ethanol and water respectively. The ibuprofen solution was then added to the aqueous solutions containing the different concentrations of disintegrant. Ibuprofen precipitated within 10 min and the crystals were separated and dried for further studies. The obtained crystals were characterized in terms of flow, density, tablet hardness, dissolution behaviour and solid state. The results showed most of engineered ibuprofen to have better flow with a high compactibility. The results also showed that an increase in the concentration of starch in the crystallization medium resulted in a reduction in the hardness of ibuprofen tablets, but this was not the case for ibuprofen samples engineered in the presence of sodium starch glycolate. It is interesting to note that although engineered ibuprofen showed superior dissolution as compared to untreated ibuprofen, the highest concentration of starch (10%) or sodium starch glycolate (7%) slowed down the release remarkably due to an increase in the viscosity of the dissolution medium around drug particles. Solid state analysis (FT-IR, XRPD and DSC) ruled out the presence of different polymorphic forms and also any interaction between these disintegrants and ibuprofen. In conclusion, the engineering of ibuprofen in the presence of disintegrant showed how properties such as flow, compaction and dissolution behaviour can be simultaneously manipulated to suit a desired application.
    Citation
    Crystal engineering of ibuprofen using starch derivatives in crystallization medium to produce promising ibuprofen with improved pharmaceutical performance 2015, 5 (57):46119 RSC Adv.
    Publisher
    Royal Society of Chemistry
    Journal
    RSC Advances
    URI
    http://hdl.handle.net/2436/565031
    DOI
    10.1039/C5RA06183K
    Additional Links
    http://xlink.rsc.org/?DOI=C5RA06183K
    Type
    Journal article
    Language
    en
    ISSN
    2046-2069
    ae974a485f413a2113503eed53cd6c53
    10.1039/C5RA06183K
    Scopus Count
    Collections
    Research Institute in Healthcare Science

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.