• Admin Login
    View Item 
    •   Home
    • Faculty of Science and Engineering
    • Faculty of Science and Engineering
    • View Item
    •   Home
    • Faculty of Science and Engineering
    • Faculty of Science and Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WIRECommunitiesTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisherThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisher

    Administrators

    Admin Login

    Local Links

    AboutThe University LibraryOpen Access Publications PolicyDeposit LicenceCOREWIRE Copyright and Reuse Information

    Statistics

    Display statistics

    Synthetic faujasite based on coal by-products for the treatment of acid mine drainage (AMD).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    CarlosPatras0608.pdf
    Size:
    469.1Kb
    Format:
    PDF
    Description:
    Rois et al WastEng08
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Authors
    Rios, Carlos A.
    Williams, Craig D.
    Roberts, Clive L.
    Fullen, Michael A.
    Issue Date
    2008
    
    Metadata
    Show full item record
    Abstract
    Acid mine drainage (AMD) has long been a significant environmental problem associated to mining operations at the Parys Mountain copper-lead-zinc deposit of Anglesey (North Wales), a volcanogenic massive sulphide district of major metallogenic importance. AMD is a natural occurrence resulting from the microbial oxidation of sulphide minerals, especially pyrite (FeS2), pyrite in presence of water and air, which produces polluted waters strongly acidic containing high concentrations of Fe, sulphate and toxic metals. The treatment of AMD has traditionally been conducted by neutralization with lime or similar materials. However, liming is often temporary and produces secondary wastes, such as metal hydroxide sludges and gypsum, which are highly regulated and have costly disposal requirements. Several methods for AMD treatment have been developed, although adsorption being the preferred method for heavy metal removal due to its effectiveness. AMD remediation can be very costly and difficult, due to the high costs of activated carbon production and regeneration for water treatment. Therefore, alternative low-cost liming materials are constantly sought. Such adsorbents should be readily available, economically viable and easily regenerated. The aim of this study is to investigate the efficiency of synthetic faujasite obtained from coal by-products as adsorbent in removing heavy metals from AMD generated at the Parys Mountain copper-lead-zinc deposit.
    Citation
    In: WasteEng08 - 2nd International conference on engineering for waste valorisation : proceedings, Greece: University of Patras, 3-5 June 2008.
    Publisher
    Greece: University of Patras
    URI
    http://hdl.handle.net/2436/50573
    Additional Links
    http://catdoc.enstimac.fr:8080/Record.htm?idlist=1&record=19138880124919560629
    Type
    Conference contribution
    Language
    en
    ISBN
    978-960-530-100-2
    Collections
    Faculty of Science and Engineering

    entitlement

     

    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.