• Admin Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WIRECommunitiesTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisherThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisher

    Administrators

    Admin Login

    Local Links

    AboutThe University LibraryOpen Access Publications PolicyDeposit LicenceCOREWIRE Copyright and Reuse Information

    Statistics

    Display statistics

    Automatic Generation of Factual Questions from Video Documentaries

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Thesis Y Skalban.pdf
    Size:
    3.354Mb
    Format:
    PDF
    Download
    Authors
    Skalban, Yvonne
    Advisors
    Mitkov, Ruslan
    Specia, Lucia
    Ha, Le An
    Issue Date
    2013-10
    
    Metadata
    Show full item record
    Abstract
    Questioning sessions are an essential part of teachers’ daily instructional activities. Questions are used to assess students’ knowledge and comprehension and to promote learning. The manual creation of such learning material is a laborious and time-consuming task. Research in Natural Language Processing (NLP) has shown that Question Generation (QG) systems can be used to efficiently create high-quality learning materials to support teachers in their work and students in their learning process. A number of successful QG applications for education and training have been developed, but these focus mainly on supporting reading materials. However, digital technology is always evolving; there is an ever-growing amount of multimedia content available, and more and more delivery methods for audio-visual content are emerging and easily accessible. At the same time, research provides empirical evidence that multimedia use in the classroom has beneficial effects on student learning. Thus, there is a need to investigate whether QG systems can be used to assist teachers in creating assessment materials from these different types of media that are being employed in classrooms. This thesis serves to explore how NLP tools and techniques can be harnessed to generate questions from non-traditional learning materials, in particular videos. A QG framework which allows the generation of factual questions from video documentaries has been developed and a number of evaluations to analyse the quality of the produced questions have been performed. The developed framework uses several readily available NLP tools to generate questions from the subtitles accompanying a video documentary. The reason for choosing video vii documentaries is two-fold: firstly, they are frequently used by teachers and secondly, their factual nature lends itself well to question generation, as will be explained within the thesis. The questions generated by the framework can be used as a quick way of testing students’ comprehension of what they have learned from the documentary. As part of this research project, the characteristics of documentary videos and their subtitles were analysed and the methodology has been adapted to be able to exploit these characteristics. An evaluation of the system output by domain experts showed promising results but also revealed that generating even shallow questions is a task which is far from trivial. To this end, the evaluation and subsequent error analysis contribute to the literature by highlighting the challenges QG from documentary videos can face. In a user study, it was investigated whether questions generated automatically by the system developed as part of this thesis and a state-of-the-art system can successfully be used to assist multimedia-based learning. Using a novel evaluation methodology, the feasibility of using a QG system’s output as ‘pre-questions’ with different types of prequestions (text-based and with images) used was examined. The psychometric parameters of the automatically generated questions by the two systems and of those generated manually were compared. The results indicate that the presence of pre-questions (preferably with images) improves the performance of test-takers and they highlight that the psychometric parameters of the questions generated by the system are comparable if not better than those of the state-of-the-art system. In another experiment, the productivity of questions in terms of time taken to generate questions manually vs. time taken to post-edit system-generated questions was analysed. A viii post-editing tool which allows for the tracking of several statistics such as edit distance measures, editing time, etc, was used. The quality of questions before and after postediting was also analysed. Not only did the experiments provide quantitative data about automatically and manually generated questions, but qualitative data in the form of user feedback, which provides an insight into how users perceived the quality of questions, was also gathered.
    Publisher
    University of Wolverhampton
    URI
    http://hdl.handle.net/2436/314607
    Type
    Thesis or dissertation
    Language
    en
    Description
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy October 2013
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.