• Admin Login
    View Item 
    •   Home
    • Faculty of Science and Engineering
    • Faculty of Science and Engineering
    • View Item
    •   Home
    • Faculty of Science and Engineering
    • Faculty of Science and Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WIRECommunitiesTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisherThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisher

    Administrators

    Admin Login

    Local Links

    AboutThe University LibraryOpen Access Publications PolicyDeposit LicenceCOREWIRE Copyright and Reuse Information

    Statistics

    Display statistics

    Thermogravimetric Evidence of Nickel or Copper Isomorphously Substituted into a Zeolite.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Round, Catherine I.
    Williams, Craig D.
    Latham, Kay
    Duke, Catherine V. A.
    Issue Date
    2001
    
    Metadata
    Show full item record
    Abstract
    The synthesis of pure silica ZSM-5 has been modified to produce highly crystalline material in the protonated form, necessary for catalytic activity, directly from a low water fluoride gel. Tetrahedrally co-ordinated divalent species of nickel and copper have been synthesised as salts of large organic cations and increasing mole fractions incorporated into the zeolite gels. The products have been analysed and characterised using simultaneous thermogravimetric and derivative thermogravimetric analysis (TG-DTG). The thermal decomposition under nitrogen of the metal associated cations, tetraethylammonium (TEA+), occluded within the zeolite channels is indicative and characteristic of the incorporation of heteroatoms into the zeolite framework. Anomalous losses in the systems can be explained by Jahn–Teller distortions. The mass losses increased with increased metal loading and were consistent with those reported in full water system, analysis also confirmed that the material was hydrophobic and thermally stable. Analysis by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR) and Atomic Absorption Spectroscopy (AAS) has confirmed the reliability of TG-DTG as a diagnostic tool. The maximum levels of substitution achieved were (mass%) Ni 3.93 and Cu 4.38.
    Citation
    Journal of Thermal Analysis and Calorimetry, 63(2): 329-338
    Publisher
    SpringerLink
    Journal
    Journal of Thermal Analysis and Calorimetry
    URI
    http://hdl.handle.net/2436/30478
    DOI
    10.1023/A:1010133822423
    Additional Links
    https://link.springer.com/article/10.1023%2FA%3A1010133822423
    Type
    Journal article
    Language
    en
    ISSN
    14182874
    15728943
    ae974a485f413a2113503eed53cd6c53
    10.1023/A:1010133822423
    Scopus Count
    Collections
    Faculty of Science and Engineering

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.