Show simple item record

dc.contributor.authorNelson, Paul N.
dc.contributor.authorWestwood, Olwyn M. R.
dc.contributor.authorFreimanis, Graham L.
dc.contributor.authorRoden, Denise A.
dc.contributor.authorSissaoui, Samir
dc.contributor.authorRylance, Paul
dc.contributor.authorHay, Frank C.
dc.date.accessioned2008-06-20T09:58:59Z
dc.date.available2008-06-20T09:58:59Z
dc.date.issued2008
dc.identifier.citationClinical Medicine: Arthritis and Musculoskeletal Disorders, 2008(1): 33-42
dc.identifier.issn1178-1149
dc.identifier.urihttp://hdl.handle.net/2436/30232
dc.descriptionClinical Medicine: Arthritis and Musculoskeletal Disorders is an international, open access, peer reviewed journal.
dc.description.abstractEpitope mapping allowed the location of antigenic determinants on a protein macromolecule to be identified. In particular, pepscan techniques that utilize a series of overlapping peptides, help detect key amino acid residues that are important in antibody recognition and binding. In a previous study, we employed 15-mer peptides spanning the entire length of IgG1Fc to ascertain successfully the target epitopes of isotypic/allotypic monoclonal reagents. As an extension to this work we have used these peptides to evaluate the location of epitope targets of five IgM rheumatoid factor antibodies (RFAbs). Overall, 2 antibodies, RFAb TS2 and TS1, detected a similar epitope within the CH3 domain (360-KNQVSLTCLVKGFYP-374), whilst 1 (RFAb SJ1) recognised an epitope in the CH2 domain (294- EQYNSTYRVVSVLTV-308). In contrast, 2 RFAbs, PRSJ2 and PRTS1 detected four and five epitopes respectively within the Fc region. RFAb PRSJ2 recognised epitopes detected by RFAB TS2 and TS1 but also further epitopes in the CH2 domain (256-TPEVTCVVVDVSHED-270) and CH3 domain (418-QQGNVFSCSVMHEAL-432). Similarly, RFAb PRTS1 detected all four epitopes plus a fifth in the CH3 domain (382-ESNGQPENNYKTTPP-396). In essence there was a consensus of target epitopes identified by these rheumatoid factor antibodies. Interestingly, two epitopes (256–270, CH2 domain and 360–374, CH3 domain) were novel in that they had not been identified in previous pepscan studies. The other epitopes recognised, either overlapped or were immediately adjacent to previous epitopes detected by poly/monoclonal rheumatoid factor antibodies. Molecular modelling (PCImdad) of IgG1Fc showed that all five epitopes were exposed and surface accessible for antibody interaction. In addition, a bioinformatics analysis of the Fc region using ExPASy was employed to identify key antigenic determinants. This ‘in silico’ approach may provide a means of determining key regions without the need to develop overlapping peptides spanning the entire length of a macromolecule.
dc.language.isoen
dc.publisherLibertas Academica Press
dc.relation.urlhttp://la-press.com/article.php?article_id=780
dc.subjectEpitome mapping
dc.subjectRheumatoid Factor
dc.subjectBioinformatics
dc.subjectPeptides
dc.subjectMonoclonal antibodies
dc.subjectMolecular Biology
dc.subjectAntibodies
dc.subjectAntigens
dc.subjectPepscan analysis
dc.titleComparison of Antigenic Regions Identified on IgG1Fc Using Bioinformatics vs Pepscan Analysis
dc.typeJournal article
dc.identifier.journalClinical Medicine: Arthritis and Musculoskeletal Disorders
refterms.dateFOA2018-08-21T10:59:40Z
html.description.abstractEpitope mapping allowed the location of antigenic determinants on a protein macromolecule to be identified. In particular, pepscan techniques that utilize a series of overlapping peptides, help detect key amino acid residues that are important in antibody recognition and binding. In a previous study, we employed 15-mer peptides spanning the entire length of IgG1Fc to ascertain successfully the target epitopes of isotypic/allotypic monoclonal reagents. As an extension to this work we have used these peptides to evaluate the location of epitope targets of five IgM rheumatoid factor antibodies (RFAbs). Overall, 2 antibodies, RFAb TS2 and TS1, detected a similar epitope within the CH3 domain (360-KNQVSLTCLVKGFYP-374), whilst 1 (RFAb SJ1) recognised an epitope in the CH2 domain (294- EQYNSTYRVVSVLTV-308). In contrast, 2 RFAbs, PRSJ2 and PRTS1 detected four and five epitopes respectively within the Fc region. RFAb PRSJ2 recognised epitopes detected by RFAB TS2 and TS1 but also further epitopes in the CH2 domain (256-TPEVTCVVVDVSHED-270) and CH3 domain (418-QQGNVFSCSVMHEAL-432). Similarly, RFAb PRTS1 detected all four epitopes plus a fifth in the CH3 domain (382-ESNGQPENNYKTTPP-396). In essence there was a consensus of target epitopes identified by these rheumatoid factor antibodies. Interestingly, two epitopes (256–270, CH2 domain and 360–374, CH3 domain) were novel in that they had not been identified in previous pepscan studies. The other epitopes recognised, either overlapped or were immediately adjacent to previous epitopes detected by poly/monoclonal rheumatoid factor antibodies. Molecular modelling (PCImdad) of IgG1Fc showed that all five epitopes were exposed and surface accessible for antibody interaction. In addition, a bioinformatics analysis of the Fc region using ExPASy was employed to identify key antigenic determinants. This ‘in silico’ approach may provide a means of determining key regions without the need to develop overlapping peptides spanning the entire length of a macromolecule.


Files in this item

Thumbnail
Name:
Nelson 2008.pdf
Size:
559.0Kb
Format:
PDF
Description:
Nelson 2008 Clinic medicine1

This item appears in the following Collection(s)

Show simple item record