• Admin Login
    View Item 
    •   Home
    • Faculty of Science and Engineering
    • Faculty of Science and Engineering
    • View Item
    •   Home
    • Faculty of Science and Engineering
    • Faculty of Science and Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WIRECommunitiesTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisherThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisher

    Administrators

    Admin Login

    Local Links

    AboutThe University LibraryOpen Access Publications PolicyDeposit LicenceCOREWIRE Copyright and Reuse Information

    Statistics

    Display statistics

    Numerical Analysis of Superplastic Blow Forming of Ti-6Al-4V alloys

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Publisher version
    View Source
    Access full-text PDFOpen Access
    View Source
    Check access options
    Check access options
    Authors
    Chen, Yanyun
    Kibble, Kevin A.
    Hall, Frank Richard
    Huang, Xiaoguang
    Issue Date
    2001
    
    Metadata
    Show full item record
    Abstract
    The superplastic blow forming of a Ti–6Al–4V sheet into a cylindrical cup has been numerically analysed based on the actual forming process using ABAQUS. A detailed element type study has been performed to eliminate the element dependency in the finite element analysis. The accuracy and reliability of the proposed finite element model has been validated in comparison with experimental data. The validation proves that, there is a good agreement between the simulation and the experiment. In addition, the best prediction of the thickness distribution can be obtained using the continuum element. Furthermore, the effects of major factors such as friction coefficient and the strain rate sensitivity index upon the optimum forming pressure-time and thickness distribution of the component have been studied systematically using the proposed finite element model.
    Citation
    Materials and Design, 22(8): 679-685
    Publisher
    Amsterdam: Elsevier
    Journal
    Materials and Design
    URI
    http://hdl.handle.net/2436/29607
    DOI
    10.1016/S0261-3069(01)00009-7
    Additional Links
    http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TX5-43XFFJX-6&_user=1644469&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000054077&_version=1&_urlVersion=0&_userid=1644469&md5=85f9b37dc34490fead03d11cff4f3bdb
    Type
    Journal article
    Language
    en
    Description
    This paper provides an analytical solution to the real industrial problem of the superplastic forming of a titanium jet engine burner component and was undertaken in collaboration with Rolls-Royce’s Process Modelling Group (J Spence, now working in the University). The research resulted in a practical prototyping methodology combined with computational modelling of superplastic forming that has wider application.
    ISSN
    02613069
    ae974a485f413a2113503eed53cd6c53
    10.1016/S0261-3069(01)00009-7
    Scopus Count
    Collections
    Faculty of Science and Engineering

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.