• Admin Login
    Search 
    •   Home
    • Faculty of Science and Engineering
    • Search
    •   Home
    • Faculty of Science and Engineering
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WIRECommunitiesTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisherThis CommunityTitleAuthorsIssue DateSubmit DateSubjectsTypesJournalDepartmentPublisher

    Administrators

    Admin Login

    Filter by Category

    Subjects
    polyhydroxyalkanoates (4)
    biodegradability (1)biorefinery (1)carbon sources (1)chloroform (1)View MoreJournalBioengineering (1)Biomacromolecules (1)International Journal of Molecular Sciences (1)Polymers (1)Authors
    Adamus, Grazyna (4)
    Jiang, Guozhan (4)
    Johnston, Brian (4)
    Radecka, Iza (4)
    Hill, David (3)View MoreYear (Issue Date)2017 (2)2016 (1)2018 (1)TypesJournal article (4)

    Local Links

    AboutThe University LibraryPublications PolicyDeposit LicenceCORESubmit item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-4 of 4

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 4CSV
    • 4RefMan
    • 4EndNote
    • 4BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    The molecular level characterization of biodegradable polymers originated from polyethylene using non-oxygenated polyethylene wax as a carbon source for polyhydroxyalkanoate production

    Johnston, Brian; Jiang, Guozhan; Hill, David; Adamus, Grazyna; Kwiecień, Iwona; Zięba, Magdalena; Sikorska, Wanda; Green, Matthew; Kowalczuk, Marek; Radecka, Iza (MDPI, 2017-08-28)
    There is an increasing demand for bio-based polymers that are developed from recycled materials. The production of biodegradable polymers can include bio-technological (utilizing microorganisms or enzymes) or chemical synthesis procedures. This report demonstrates the corroboration of the molecular structure of polyhydroxyalkanoates (PHAs) obtained by the conversion of waste polyethylene (PE) via non-oxygenated PE wax (N-PEW) as an additional carbon source for a bacterial species. The N-PEW, obtained from a PE pyrolysis reaction, has been found to be a beneficial carbon source for PHA production with Cupriavidus necator H16. The production of the N-PEW is an alternative to oxidized polyethylene wax (O-PEW) (that has been used as a carbon source previously) as it is less time consuming to manufacture and offers fewer industrial applications. A range of molecular structural analytical techniques were performed on the PHAs obtained; which included nuclear magnetic resonance (NMR) and electrospray ionisation tandem mass spectrometry (ESI-MS/MS). Our study showed that the PHA formed from N-PEW contained 3-hydroxybutyrate (HB) with 11 mol% of 3-hydroxyvalerate (HV) units.
    Thumbnail

    Carbon sources for polyhydroxyalkanoates and an integrated biorefinery

    Jiang, Guozhan; Hill, David; Kowalczuk, Marek; Johnston, Brian; Adamus, Grazyna; Irorere, Victor; Radecka, Iza (MDPI, 2016-07-19)
    Polyhydroxyalkanoates (PHAs) are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs’ biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are primarily derived from food-based carbon sources, raising concerns over the sustainability of their production in terms of their impact on food prices. This paper gives an overview of the current carbon sources used for PHA production and the methods used to transform these sources into fermentable forms. This allows us to identify the opportunities and restraints linked to future sustainable PHA production. Hemicellulose hydrolysates and crude glycerol are identified as two promising carbon sources for a sustainable production of PHAs. Hemicellulose hydrolysates and crude glycerol can be produced on a large scale during various second generation biofuels’ production. An integration of PHA production within a modern biorefinery is therefore proposed to produce biofuels and bioplastics simultaneously. This will create the potential to offset the production cost of biofuels and reduce the overall production cost of PHAs.
    Thumbnail

    Biodegradable PBAT/PLA blend with bioactive MCPA-PHBV conjugate suppresses weed growth

    Kwiecień, Iwona; Adamus, Grazyna; Jiang, Guozhan; Radecka, Iza; Baldwin, Timothy C.; Khan, Habib R.; Johnston, Brian; Pennetta, Valentina; Hill, David; Bretz, Inna; et al. (ACS Paragon Plus Environment, 2017-12-20)
    The herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA) conjugated with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was prepared via a melt transesterification route. The resultant bioactive oligomer was then mixed with a blend of polylactide (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) with different loadings; to manufacture films to be used as a bioactive, biodegradable mulch to deliver the herbicide to target broadleaf weed species. The biological targeting of the MCPA-PHBV conjugate in the mulch film was investigated under glasshouse conditions using faba bean (Vicia faba) as a selective (non-target) model crop species having broadleaf morphology. The presence of the MCPA-PHBV conjugate in the biodegradable PBTA/PLA blend was shown to completely suppress the growth of broadleaf weed species, whilst displaying only a mild effect on the growth of the model crop. The degradation of the mulch film under glasshouse conditions was quite slow. The release of the MCPA-PHBV during this process was detected using NMR, GPC, EDS and DSC analyses, indicating that the majority of the MCPA diffused out after MCPA-PHBV conjugate bond scission. These data provide a strong “proof of concept” and show that this biodegradable, bioactive film is a good candidate for future field applications and may be of wide agricultural applicability.
    Thumbnail

    Biomass extraction using non-chlorinated solvents for biocompatibility improvement of polyhydroxyalkanoates

    Jiang, Guozhan; Johnston, Brian; Townrow, David E; Radecka, Iza; Koller, Martin; Chaber, Pawel; Adamus, Grazyna; Kowalczuk, Marek (MDPI, 2018-07-03)
    An economically viable method to extract polyhydroxyalkanoates (PHAs) from cells is desirable for this biodegradable polymer of potential biomedical applications. In this work, two non-chlorinated solvents, cyclohexanone and -butyrolactone, were examined for extracting PHA produced by the bacterial strain Cupriavidus necator H16 cultivated on vegetable oil as a sole carbon source. The PHA produced was determined as a poly(3-hydroxybutyrate) (PHB) homopolyester. The extraction kinetics of the two solvents was determined using gel permeation chromatography (GPC). When cyclohexanone was used as the extraction solvent at 120 C in 3 min, 95% of the PHB was recovered from the cells with a similar purity to that extracted using chloroform. With a decrease in temperature, the recovery yield decreased. At the same temperatures, the recovery yield of -butyrolactone was significantly lower. The effect of the two solvents on the quality of the extracted PHB was also examined using GPC and elemental analysis. The molar mass and dispersity of the obtained polymer were similar to that extracted using chloroform, while the nitrogen content of the PHB extracted using the two new solvents was slightly higher. In a nutshell, cyclohexanone in particular was identified as an expedient candidate to efficiently drive novel, sustainable PHA extraction processes.
    DSpace software (copyright © 2002 - 2019)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.