• Lost therapeutic potential of monocyte-derived dendritic cells through lost tissue homing: Stable restoration of gut specificity with retinoic acid

      Bernardo, D; Mann, ER; Al-Hassi, HO; English, NR; Man, R; Lee, GH; Ronde, E; Landy, J; Peake, STC; Hart, AL; et al. (Wiley, 2013-09-08)
      Summary: Human monocyte-derived dendritic cells (DC) (MoDC) are utilized for immunotherapy. However, in-vitro immunological effects are often not mirrored in vivo. We studied the tissue-homing potential of MoDC. Circulating monocytes and DC expressed different tissue-homing markers and, during in-vitro development of MoDC, homing marker expression was lost resulting in a 'homeless' phenotype. Retinoic acid (RA) induced gut-homing markers (β7 and CCR9) and a regulatory phenotype and function [decreased human leucocyte antigen D-related (HLA-DR) and increased ILT3 and fluorescein isothiocyanate (FITC-dextran uptake) in MoDC]. RA-MoDC were less stimulatory and primed conditioned T cells with a gut-homing profile (β7+CLA-). Unlike the normal intestinal microenvironment, that from inflamed colon of ulcerative colitis (UC) patients did not induce regulatory properties in MoDC. However, RA-MoDC maintained their regulatory gut-specific properties even in the presence of UC microenvironment. Therefore, MoDC may be ineffectual for immunotherapy because they lack tissue-homing and tissue-imprinting specificity. However, MoDC rehabilitation with gut-homing potential by RA could be useful in promoting immunotherapy in pathologies such as UC. © 2013 The Authors. Clinical and Experimental Immunology published by John Wiley & Sons Ltd on behalf of British. Society for Immunology.
    • Ulcerative colitis: Understanding its cellular pathology could provide insights into novel therapies

      Kaur, A; Goggolidou, P; Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY UK. (Springer Science and Business Media LLC, 2020-04-21)
      © 2020 The Author(s). Dynamic interactions between the gastrointestinal epithelium and the mucosal immune system normally contribute to ensuring intestinal homeostasis and optimal immunosurveillance, but destabilisation of these interactions in genetically predisposed individuals can lead to the development of chronic inflammatory diseases. Ulcerative colitis is one of the main types of inflammatory diseases that affect the bowel, but its pathogenesis has yet to be completely defined. Several genetic factors and other inflammation-related genes are implicated in mediating the inflammation and development of the disease. Some susceptibility loci associated with increased risk of ulcerative colitis are found to be implicated in mucosal barrier function. Different biomarkers that cause damage to the colonic mucosa can be detected in patients, including perinuclear ANCA, which is also useful in distinguishing ulcerative colitis from other colitides. The choice of treatment for ulcerative colitis depends on disease severity. Therapeutic strategies include anti-tumour necrosis factor alpha (TNF-α) monoclonal antibodies used to block the production of TNF-α that mediates intestinal tract inflammation, an anti-adhesion drug that prevents lymphocyte infiltration from the blood into the inflamed gut, inhibitors of JAK1 and JAK3 that suppress the innate immune cell signalling and interferons α/β which stimulate the production of anti-inflammatory cytokines, as well as faecal microbiota transplantation. Although further research is still required to fully dissect the pathophysiology of ulcerative colitis, understanding its cellular pathology and molecular mechanisms has already proven beneficial and it has got the potential to identify further novel, effective targets for therapy and reduce the burden of this chronic disease.