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Abstract 

We study the effects of using semantic information in morphological segmentation, which 
is obtained from dense continuous vector space since words that are derived from each 
other will remain semantically related. We use mathematical models such as maximum 
likelihood estimate (MLE) and maximum a posteriori estimate (MAP) by incorporating 
semantic information obtained from the dense word vector representations. Our approach 
does not require any annotated data which makes it fully unsupervised and requires only 
a small amount of raw data and pre-trained word embeddings for training purposes.The 
results show that using dense vector representations helps in morphological segmentation 
especially for low resource languages. We present results for Turkish, English, and German. 
Our semantic MLE model outperforms other suggested unsupervised models for Turkish 
language. Our proposed models could be also used for any other low resource language 
with concatenative morphology. 

1 Introduction 

Morphological segmentation is the task of splitting words into smallest meaning-

ful units, called morphemes. For example, the word transformations is split into 
trans, form, ation, and s. The task is crucial in many natural language processing 
applications such as information retrieval, machine translation, or sentiment anal-
ysis. Morphological segmentation mitigates the sparsity in these tasks. Especially 
in agglutinative languages like Turkish, the number of word forms is theoretically 
infinite (Hankamer, 1986). Character-based approaches have also been recently in-
troduced to tackle with the sparsity problem in NLP tasks (Cao and Rei, 2016; 
Bojanowski et al., 2017). 
Morphology is tightly coupled with semantics and syntax. Morphological deriva-

tion stipulates the protection of the semantic meaning of the derived word. For ex-
ample, the words sell -seller, believe-believer are semantically related to each other, 
where one of them describes the action of the verb and the other one describes the 
performer of the same action. Therefore, each word is generated depending on the 
syntactic context within a sentence, e.g. actions generally follow actors in a SVO 
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(subject-verb-object) grammatical structure. Therefore, morphology is also tightly 
coupled with syntax. 
The greater part of the work on unsupervised morphological segmentation makes 

use of the orthographic features without considering the semantics. In recent years, 
there have been studies that employ deep learning techniques in morphology to 
incorporates semantics with morphological structure (Cao and Rei, 2016; Cotterell 
and Schütze, 2015; Lazaridou et al., 2013). In these approaches, morphemes are 
used to learn the meaning of words compositionally based on the morpheme and 
word embeddings. 
In this study, we propose two approaches. In the first approach, we detect the 

potential morpheme boundary points using word embeddings and use those po-
tential morphemes in order to learn the final morphological segmentation of the 
words based on maximum likelihood estimate (MLE). Thus, the segmentation is 
performed in two stages. 
In the second approach, we combine the semantic information with the likelihood 

using maximum a posteriori estimate (MAP) by employing semantic similarity be-
tween different word forms as prior information. We obtain the semantic features 
of words from the word embeddings that are learned by word2vec (Mikolov et al., 
2013). Word meanings are represented in a low-dimensional vector space (i.e. 200 
dimensions for Turkish and 300 dimensions for English and German in our experi-
ments) and we use the cosine similarity between the word embeddings in order to 
compute the semantic similarity between different word forms to decide whether 
two words are morphologically derived/inflected from each other or not. The se-
mantic relatedness between different word forms will be used as prior information 
to find the correct morpheme boundaries. For example, inform and information are 
semantically related enough to be counted as derived from each other, which leads 
to a valid morpheme boundary such as inform+ation. However, car and care are 
not semantically related and cannot be derived from each other. A similar intuition 
has also been used by Schone and Jurafsky (2001) (see Section 2). 
Both of the methods we propose in this paper address agglutinative morphology 

where each morpheme expresses a single meaning. Agglutinative languages can 
produce very long words where each of them has its own meaning. However, the 
meaning deviation usually is not extensive and there is still semantic relatedness 
between the original word and the derived/inflected word. During inflection, the 
word’s existing meaning remains the same because each inflectional morpheme has 
its own function such as person, tense, accusative case etc. During derivation the 
derived word still remains related to the original word. For example, tuz+luk in 
Turkish (means saltcellar) is derived from the word tuz (means salt) and both 
words are still closely semantically related. Here, we perform the experiments on 
Turkish which is an agglutinative language, on English which has a comparably 
poorer morphology, and on German which has an extensive usage of compounds. 
Therefore, we show how our proposed methods work on different morphological 
typologies. As far as we know, this is the first attempt that explicitly incorporate 
semantics in unsupervised morphological segmentation from the perspective of the 
agglutinative morphological typology. 
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The article is organized as follows: Section 2 addresses the related work on unsu-
pervised morphological segmentation, section 3 describes the MLE and MAP mod-

els proposed for unsupervised morphological segmentation, section 4 explains the 
inference algorithm to learn the MAP model, section 5 presents the experimental 
results with comparison to other state-of-art models on morphological segmenta-

tion, and finally section 6 concludes the article with general findings of the article 
along with the potential future work. 

2 Related Work 

Morphological segmentation is one of the oldest tasks in natural language process-
ing, that goes back to Harris (Harris, 1955, 1970b) with the term letter successor 
that defines the distributional properties of letters within in a word. The variety 
of letter successors in any position within a word would indicate that there could 
be a morpheme boundary at that point. In other words, when a set of words is 
inserted on a trie1 structure, the branching occurs in the potential segmentation 
points (except the root where all words are rooted). 
One of the well-known unsupervised morphological segmentation systems is Mor-

fessor, which is actually a family of different models. Morfessor Baseline (Creutz and 
Lagus, 2005b) employs the Minimum Description Length (MDL) principle which 
was formerly applied by de Marcken (1996) and Goldsmith (2001). The MDL prin-
ciple is based on the idea that the best hypothesis that explains the data is the 
one which leads to the best compression of the data. In Morfessor, the morpheme 
set that leads to the minimum corpus length is searched, which will give the po-
tential morphological segmentation of each word. Morfessor CatMAP (Creutz and 
Lagus, 2007) extends the Morfessor Baseline by modeling the transition between the 
morpheme types (stem, prefix or suffix) using the hidden Markov models (HMMs). 
Goldwater et al. (2006) present a two-stage Bayesian model, where morphemes 

are drawn from a multinomial distribution (i.e. generator) and tokens are drawn 
from a Pitman-Yor process to have a power-law distribution over word frequencies 
(i.e. adaptor). 
Besides orthographic features, syntactic features have also been used in unsuper-

vised morphological segmentation. Can and Manandhar (2010) learn morphologi-

cal paradigms by using the syntactic categories obtained by context distribution 
clustering by Clark (2000). Lee et al. (2011) also incorporate part-of-speech (PoS) 
information in morphological segmentation for the Arabic language. 
Semantics has also been used in unsupervised morphological segmentation. 

Schone and Jurafsky (2001) use Latent Semantic Analysis (LSA) to learn the seman-

tic vectors of each word. A segmentation is proposed when the stem and stem+affix 
are semantically similar enough. We also follow the same intuition in this study, 

1 A trie is a tree-like data structure where the words can be retrieved by traversing the 
tree from the root till the leaf nodes. Each node refers to either a letter in the alphabet 
or a sequence of letters. If each node that is the only child is merged with its parent, 
then the trie is called radix tree. 
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but this time using neural word embeddings obtained by Mikolov et al. (2013) to 
measure the semantic similarity between different word tokens. However, word em-

beddings learned by various methods could also been incorporated in our proposed 
models. 
Progress in learning word embeddings from neural networks has made the se-

mantic information available in computational linguistics in the recent years. 
Narasimhan et al. (2015) introduce a log-linear model based on morphological 
chains where each word and its forms are defined as child-parent relations. For 
example, respect→respectful→respectfulness forms a morphological chain, where 
respect is the parent of respectful and respectful is the child of respect, and the same 
holds for respectful→respectfulness. Narasimhan et al. (2015) use semantic similar-

ity based on word embeddings as a feature to find child-parent relationships in their 
log-linear model. 
Soricut and Och (2015) observe morphological regularities within a word embed-

ding space that is estimated by the SkipGram model of Mikolov et al. (2013). The 
study shows that word embedding space exhibits the morphological transforma-

tions between words. The morphological rules for adding a prefix or a suffix lead 
to a similar shift in the meaning of any word in the space. The authors use this 
information to create the morphological families of words which can be used for 
further morphological analysis without using any external morphological analyzer. 
Our model is mostly similar to the works by Schone and Jurafsky (2001) and 

Narasimhan et al. (2015). We also utilize the semantic similarity between different 
word forms in order to learn morpheme boundary points. Our work is also similar 
to other works that use orthographic features (i.e. frequency of each morpheme 
in the corpus). We combine both orthographic and semantic features in the same 
model to learn morphological segmentation in an unsupervised framework. 
Besides all the mentioned work, Morpho Challenge (Kurimo et al., 2011) was 

held as a competition for statistical machine learning algorithms designed for dis-
covering morphemes that each word consists of. The competition was organized 
between 2005-2010 and many unsupervised models were introduced to the commu-

nity for the morphological segmentation problem. The challenge provided publicly 
available datasets for several languages including English, German, Turkish, Ara-

bic etc. The datasets involve training sets that include raw words along with their 
frequency information obtained from another corpus, test sets that include gold 
segmentations of a comparably smaller set of words, and development sets that are 
used for parameter tuning. The experiments reported here use the datasets made 
publicly available by Morpho Challenge, to be able to compare our work with other 
prominent unsupervised models in the literature. 

3 Using Word Embeddings in Morphological Segmentation 

We present two frameworks based on MLE and MAP for morphological segmen-

tation. In the MLE approach, semantic similarity is used in a separate step to 
obtain the initial split points in each word, whereas in the MAP approach seman-
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tic similarity is used as prior information that is integrated in the same learning 
framework. 

3.1 MLE Model 

¨ In the MLE model, we learn segmentation in two steps ( Ustün and Can, 2016). In 
the first step, we detect the potential morpheme boundary points within each word 
in the corpus. In the second step, we learn the final segmentation points by using 
the potential morphemes obtained from the first stage. 
The initial segmentation is performed based on the semantic similarity between 

word forms that are derived from each other. For example, the substrings recreat, 
recreation, recreational are all semantically related to recreationally. We use the 
semantic relatedness similar to parent-child relations introduced in MorphoChain 
model (Narasimhan et al., 2015). We use the parent-child relations for the initial 
segmentation of the corpus. Word embeddings obtained from word2vec (Mikolov 
et al., 2013) are used analogously to compute the semantic relatedness between the 
prefixes of each word. The cosine similarity between the embeddings of two prefixes 
in n dimensional space is computed as follows: 

|v(w1) · v(w2)|
cos(v(w1), v(w2)) = (1)

kv(w1)k · kv(w2)k 

where w1 and w2 denote the prefixes, v(w1) denotes the word embedding of w1, 
and v(w2) denotes the word embedding of w2. 
Each word is scanned from right-to-left, with a letter removed at each step. 

If the cosine similarity between two prefixes is above a manually set threshold 
value2, then the segmentation point is saved as a potential segmentation and the 
segmented suffix is saved in a potential morpheme list. This process is repeated 
until the beginning of word is reached. 
The process is given in Algorithm 1. Here, GetSuffix(charNo, word) returns a 

suffix from the end of the word with length charNo. GetPrefix (charNo, word) 
returns a prefix from the beginning of the word with length charNo, and 
Cosine(prefix, word) calculates the cosine similarity between the prefix and the 
word. 
An example stripping process is given in Figure 1. The cosine similarity values for 

the same example are given in Table 1. It is clear that cosine similarity is noticeably 
higher at the real segmentation points than at non-segmentation points. The cosine 
similarity becomes very small if the prefix and the word are not semantically related. 
We assign −1 for the cosine similarity if either the prefix or the word does not exist 
in the word embedding space. 

2 We assign a threshold value based on the experiments performed on a separate devel-
opment set for each language. 
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Algorithm 1 Baseline segmentation algorithm that detects potential morpheme 
boundary points based on cosine similarity between word embeddings. 
1: procedure Semantic Parsing(word, threshold) 
2: suffixList ← ∅, 
3: wordLength ← LENGT H(word) 
4: charNo ← 1 
5: counter ← wordLength 
6: while counter > 1 do 
7: suffix ← GetSuffix(charNo, word). 
8: prefix ← GetP refix(wordLen − charNo, word). 
9: distance ← Cosine(prefix, word) 
10: if distance > threshold then 
11: suffixList ← PUT (suffix) 
12: word ← prefix 
13: charNo ← 1 
14: wordLength ← LENGT H(word) 
15: else 
16: charNo ← charNo + 1 
17: counter ← counter − 1 
18: return suffixList 

f e a r l e s s l y

Fig. 1. An illustration that shows the segmentation of the word fearlessly. The 
segmentation is performed from the right end of the word by removing letters using 
a manually set semantic similarity threshold. 

TY 
p(W |S) = p(wi|S) (2) 

i=1 

TY 
0 N = p(wi = mi + · · · + m |S) (3)i 

i=1 

T NY Y 
0 j j−1 = p(mi |S) p(m |m ,S) (4)i i 

i=1 j=1 

In Equation 2, W is the word list of size T and S is the initial segmentation 
suggested by the inner-word cosine similarities. Therefore, the probability of each 

0 Nword wi with morphemes m · · · ,m is defined by using the likelihood under the i , i 
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Table 1. The cosine similarity between the prefixes of the word fearlessly is given. 
0.25 is assigned for the cosine similarity threshold in this example. 

Word Prefix Cosine similarity Segmentation 

1 fearlessly fearlessl -1 fearlessly 
2 fearlessly fearless 0.34 fearless-ly 
3 fearless fearles 0.14 fearless-ly 
4 fearless fearle -1 fearless-ly 
5 fearless fear 0.26 fear-less-ly 
6 fear fea -1 fear-less-ly 
7 fear fe -1 fear-less-ly 

initial segmentation. For each word, we search for the segmentation that leads to 
the maximum likelihood under the given segmentation: 

0 1 N arg max P (wi = m + m · · + m |S) (5)i i + · i
0 Nwi=m +···+m ∈Swii i 

jwhere m denotes the ith morpheme in wi that consists of N morphemes. Here, i 

Swi denotes the set of all possible segmentations of wi. 
We replace the root morphemes with a start symbol F to reduce the sparsity. We 

assume that the root is always the leftmost morpheme, which may not be always 
the case in English, German or the Semitic languages. However, due to the usage 
of word embeddings, our model requires all tokens to be available in the dataset on 
their own with a proper embedding in the embedding space. However, this is not 
always true for the prefixes3.Hence, the probability of the first morpheme after the 
root being less is computed as follows: 

n(< F, less >) 
p(less|F ) = (6) 

n(F ) 

where n(< F, less >) is the frequency of less being the first morpheme coming 
just after the root. Both bigram and unigram frequencies are obtained from the 
initial segmentations. Here, we use the word types, and not tokens. We also discard 
the frequency information provided by Morpho Challenge data. We do not distin-
guish root morphemes and bound morphemes in normalization. In other words, 

0p(mi ) is normalized by the total frequency of all morphemes, and not just the root 
morphemes. 
Viterbi algorithm is used to find the segmentation with the maximum likelihood 

according to Equation 5. We apply Laplace smoothing to eliminate the zero prob-
abilities in the model4 . 

3 The limitations of the model is discussed further in Section 3.3. 
4 We applied additive smoothing with a parameter constant 1. 
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3.2 MAP Model 

In the MAP model, we adopt the Bayesian notion of the probability to place some 
prior belief on the segmentation of the corpus. For that purpose, we use the cosine 
similarity between the embeddings of the different forms of a word because we know 
that words that are inflected or derived from each other are semantically related 
to each other and this semantic relatedness is known a priori . Therefore, we use 
both orthographic features (such as the observed morpheme counts as likelihood) 
and semantic features (cosine similarity between word embeddings). The posterior 
probability of the segmentation for a given corpus is defined as follows: 

p(S|W ) ∝ 

N

p(W |S)p(S) Y 
∝ p(wi|S)p(S) (8) 

i=1 Y Y 

T

T

(7) 

� � 
0 1 N

i |S) p(s ki ) (9)∝ P (wi + m + · · · + m= mi i

i=1 YT k=1 

P (m 0 
i

1 0 1∝ |S)P (m |m , S)p(s ) (10)i i i

i=1 

0 N−1 
i , · · · ,m iP (m Ni

N
i )|m , S)p(s· · · 

where S refers to the segmentation of all the words in the corpus that is learned 
during inference (whereas S denotes the initial segmentation of the words in the 
corpus which does not change in a separate inference step). N is the number of 

k
imorphemes in each word. Here, refers to the kth morpheme boundary in wis

0 k−1that splits mk
i from the rest of the word, i.e. m . The probability + · · · + mi i

of splitting a word at any point is proportional to the cosine similarity between 
the embeddings of the two prefixes. Thus, the probability of splitting the word 

0 k−1 + mk
i after the k − 1th morpheme is estimated as follows (the + · · · + mwi = mi i

0 k−1 and mk
i ):word is split such as m + · · · + mi i

0 k−1 0 k
i )cos(m + · · · + m + · · · + m,mi ip(s ki ) = i (11)

0 z−1 0· z
i ) 

PN 
z=1 cos(m + · · + m + · · · + m,mi i i

Therefore, we convert the cosine similarity into a proper probability distribution by 
normalizing with the summation of cosine similarities through all possible binary 
split points. Here, m may not be a valid morpheme. It corresponds to any split 
point in a word during inference. However, at the end of the inference, it normally 
corresponds to valid morphemes. 
We use the MAP model by adopting two language models: unigram and bigram 

language model for the likelihood estimation. 

3.2.1 Unigram Model 

In the unigram model, each morpheme is assumed to be independent from the 
other morphemes within the same word. The dependency is incorporated through 
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the prior information which adopts the cosine similarity coming from the word 
embeddings. The unigram language model for the likelihood is defined as follows: 

p(wi|S) = P (wi = m 0 
iY 

= p(m
j=1 

N
j
i |S) 

+ m 1 
i + · · · + m Ni |S) (12) 

3.2.2 Bigram Model 

In the bigram model, we adopt a first order Markov chain where each morpheme 
depends only on the previous morpheme: 

0= mi
1 
i

N
i |S) (13)p(wi|S) P (wi + m + · · · + m= 

NY 
j
i

j−1 
i , S)p(m 0 

i |m) p(m= 
j=1 

3.3 Limitations 

Since both MAP and MLEmodels utilize semantic information, they require word 
embedding of each word in the dataset. Otherwise, our models cannot suggest any 
segmentation for those words that do not have embeddings. This is one of the 
limitations of the models. This limitation causes prefixes not to be learned by the 
models since they do not exist on their own in the datasets and they do not have 
embeddings. One possible way to overcome this limitation is to use the n-gram or 
morpheme embeddings instead of using word embeddings. However, this will require 
defining the word similarities again based on n-gram based word embeddings since 
we postulate that inflected forms of a word will remain semantically similar to each 
other. We did further analysis by using n-gram based word embeddings and they 
are presented in Section 5.2.4. 
Another limitation of our approach is the requirement of embeddings for each 

prefix of a word in order to compare the prefix with the entire word to assess a 
possible morpheme boundary. Since prefix affixes do not appear as separate words, 
their embeddings are not learned with standard word embedding methods such as 
word2vec (Mikolov et al., 2013). There are methods that learn morpheme embed-

¨ dings such as morph2vec ( Ustün and Can, 2016), which could be employed in our 
approach. Additionally, it would be possible to assign embeddings to such prefixes 
as the average of the differences between the words that contain it and the same 
words without the prefix (e.g. v(impossible)-v(possible) where v denotes the word 
embedding). The prefix issue exposes a limitation for languages with extensive usage 
of prefixes such as German and English. However, some languages such as Turkish 
do not have prefixes. We leave including prefixes in our approach as a future work. 
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kitaplarımda

kitaplarım da

kitaplar ım

kitap lar

possible segmentations:
{kitaplar+ımda}, {kitapları+mda},
kitaplarım+da}, {kitaplarımd+a}

possible segmentations:
{kitapl+arım}, {kitapla+rım},
kitaplar+ım}, {kitapları+m}

possible segmentations:
{kita+plar}, {kitap+lar},
kitapl+ar}, {kitapla+r}

Fig. 2. An illustration that shows how the Turkish word kitaplarımda is segmented 
during recursive Gibbs sampling. In each iteration of the Gibbs sampling, a binary 
segmentation of the word is drawn from the probability distribution over the binary 
segmentations of the word. Segmentation continues for each prefix until the word 
itself is selected with a left-recursion. 

4 Inference 

In the MLE model, we use Viterbi algorithm to find the maximum likelihood es-
timates based on the morphemes learned in the first step that makes use of word 

¨ embeddings ( Ustün and Can, 2016). Therefore, we do not need a separate inference 
step for the MLE model. In the MAP model, we need a separate inference algorithm 
to learn the morphemes. For this purpose, we use a stochastic inference method, 
Gibbs sampling (Geman and Geman, 1984). We sample a split point that splits a 
word in two segments (presumably a stem and a suffix) in each iteration. These 
samples are drawn from the pre-defined posterior probability distribution: 

p(W |S)p(S) 
p(S|W ) = (14) 

p(W ) 

∝ p(W |S)p(S)Y 
(15) 

110 
i + mi |S)p(si ) 

i 

We can discard the normalization constant p(W ) since it is constant for all segmen-

tations. 
We sample a word in each iteration during the inference. Once the sampled word 

is removed from the corpus, the binary segmentations of the word form a probability 
distribution. One of the binary segmentations is drawn from the following posterior 
distribution: 

∝ p(wi (16)= m 

0 1 
old,i,−m p(wi 

0 = mi 
1+ mi |S−m 1old,i )p(si ) (17) 

where the likelihood is estimated based on either the unigram model or the bigram 
model. Here, S−mold,i

0 ,−mold,i 
1 

denotes the set of current morphemes in the model 
that excludes the morphemes of wi, that are m0 

old,i and m1 
old,i in the old segmenta-

tion of the word wi. Here, m0 
old,i 

1 
old,i and m correspond to a morpheme boundary 

0 
old,i 

1 
old,i point that split the word wi into m and m that are the first and the second 

1 
i ) denotes morphemes in the old segmentation of the word. The second factor p(s

the probability of splitting the word into m0 
i and m1 

i that corresponds to a proposed 
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Algorithm 2 RGS (Recursive Gibbs Sampling) algorithm that applies left-
recursive binary segmentation of a given word. 
1: procedure RGS(wi, S) 
2: Remove the current morphemes of wi, that are m0 and mold,i 

1 
old,i 

3: Draw a binary segmentation from the given posterior distribution: p(wi = 
0 1 
old,i,−m|S−m 

= wi then 
5: S ← S ∪ m

0 
mi + m0 1 1 

i )old,i )p(si 

64: if mi 
1 
i 

6: RGS(m0 
i , S) 

7: else 
8: S ← S ∪ m0 

i 

segmentation that will be replaced with the old segmentation . The same process 
is repeated for the left part of the word m0 

i (i.e. presumably the stem). Therefore 
a left-recursion is applied until it reaches the beginning of the word as long as a 
new split point is drawn from the posterior probability distribution. This process 
is repeated for the entire corpus until the model converges to the global maximum 
point. The inference procedure is given in Algorithm 2. An example is given in 
Figure 2. The example shows the sampling process for the word kitaplarımda in 
Turkish (means in my books - kitap:’book’, lar:’s’, ım:’my’, da:’in’). In each step of 
the recursive Gibbs sampling algorithm, we choose one of the binary segmentations 
from the right end of the word. We only consider k binary segmentations that cor-
respond to the last k letters (assuming that the longest suffix has got k letters)5 . 
We repeat the process until the word itself is sampled (without splitting the word). 

5 Experiments & Results 

5.1 Data 

We used publicly available Morpho Challenge (Kurimo et al., 2011) datasets for 
both training and testing. We did experiments on three languages: Turkish, En-
glish, and German. We built the training sets by choosing most frequent 10K and 
50K words from the full word lists provided by Morpho Challenge. We combined 
the Morpho Challenge training and development sets for testing purposes. We did 
not use a separate development set for parameter tuning6. Manually collected news-
paper archives were used for learning the Turkish word embeddings with a dimen-

5 We assign k = 4 for all languages assuming that the longest suffix has got 4 letters. 
There are suffixes longer than 4 letters, such as ation in English. However, such suffixes 
are not common in many languages. 

6 The only parameter we have is the semantic similarity threshold in S-MLE model. It 
should be noted that there is not a manually set threshold value in S-MAP model. As 
for the similarity parameter in S-MLE model, we did not do any hyperparameter tuning 
in a separate development set. We assigned a threshold value of 0.25 just to include a 
semantic effect in the model. The results in Section 5.2.3 show that this parameter is 
also not optimized for our datasets. 
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Table 2. Size of the datasets for Turkish, English, and German 

Turkish English German 

Word Embeddings Train Set 361M 129M 651M 
Size of the Train Set 10K & 50K 10K & 50K 10K & 50K 
Size of the Test Set 1686 1760 1779 

sionality of 200. We used word2vec (Mikolov et al., 2013) and its open source Java 
implementation Deeplearning4J (Team, 2016) to generate the word embeddings. 
English word embeddings are pre-trained on Google News dataset and German 
word embeddings are pre-trained on Wikipedia dataset. Both word embeddings 
have a dimensionality of 300. . The size of all datasets are given in Table 2. 

We follow the same evaluation methodology provided by Morpho Challenge. A 
number of word pairs are randomly sampled from the result analyses that have at 
least one morpheme in common. For each sample word pair that really has a mor-

pheme in common according to the gold standard segmentation, one point is given. 
Total number of points is divided by the total number of sampled word pairs. This 
gives the precision. For instance, given that the proposed segmentation of the En-
glish word access is acces+s, two word pairs are selected randomly from the result 
set. Let’s assume that access shares the morpheme acces with the word accesses. In 
this case, we obtain the word pair access - accesses. Let’s also assume that access 
shares the morpheme +s with the word books. This gives another word pair, which 
is access − books. Based on the gold standard segmentations, access_N, access_N 
+PLU, book_N +PLU, the pair access − accesses is correct (shared morpheme is 
access_N) and the pair access − books is incorrect (no common morpheme). There-
fore, the precision for the word access becomes 1/2 = 50%. The same is applied 
for recall by sampling word pairs randomly that have one morpheme in common 
according to the gold standard segmentations. It is checked from the result analy-
ses whether they really have a morpheme in common. If the word pair has really a 
morpheme in common, one point is given and the total number of points is divided 
by the total number of sampled word pairs. Finally F-measure is computed as the 
harmonic mean of the precision and recall: 

1 
F − measure = (18)1 1+precision recall 

We assigned d = 0.25 for the cosine similarity threshold to extract the potential 
morphemes in the initial step in the MLE model. We performed several experiments 
on the development sets (Kurimo et al., 2011) in order to assign the threshold value. 
Such a threshold value is not needed in the MAP model. 
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5.2 Evaluation and Results 

We did experiments with four models we proposed in this article. The models are 
MLE unigram model (S-MLE unigram), MLE bigram model (S-MLE bigram), un-
igram MAP model (S-Unigram MAP), and bigram MAP model (S-Bigram MAP). 
Here S stands for semantic. We evaluated the initial segmentations obtained from 
the first step of the MLE model as a baseline model (S-Baseline). Additionally, we 
did two more iterations by updating the parameters with the new MLE estimates 
obtained from the Viterbi algorithm in the MLE model. The results are given as 
S-MLE unigram and S-MLE bigram with the number of iterations. 
We compare our model with Morfessor Baseline (Creutz and Lagus, 2005b) (M-

Baseline), Morfessor CatMAP (Creutz and Lagus, 2005a) (M-CatMAP) and Mor-

phoChain system (Narasimhan et al., 2015). Additionally, we compare our mod-

els with a baseline model where the most frequent morphemes7 are split off from 
each word using the longest common subsequence from the end of the word until 
the word cannot be split anymore. We trained Morfessor Baseline and the Mor-

fessor CatMAP by assigning the perplexity threshold and the iteration number 
as 10 (which are the default parameters). As for the MorphoChain, we assigned 
frequency threshold=0, vector size=200, minimum segmentation lenght=3 and the 
top affix selection number=100, which are also the default parameters of the model. 
For that purpose, we trained these models on the same training sets and tested on 
the same test sets for the evaluation. The results obtained from 10K of training set 
size are given in Table 3, Table 4, and 5. The results obtained from 50K of training 
set size are given in Table 6, 7, and 8. 
The results obtained from 10K training set show that our MLE bigram model 

outperforms the other models on Turkish. Our MAP models also outperform Mor-

fessor Baseline, Morfessor CatMAP, and MorphoChain, however the MAP model 
does not perform as well as our proposed MLE models. This could be due to overseg-
mentation because of high cosine similarities obtained from the word embeddings. 
For English, again MLE bigram model outperforms our other proposed models. 
However, the best scores are obtained from Morfessor Baseline. Morfessor Baseline 
also outperforms the other models on German. Our MLE bigram model comes the 
second with further one iteration for the parameter estimates in German. However, 
our MAP models do not perform very well on German analogously to other two 
languages. This may be due to the heavy usage of compounds in German language. 
Since we postulate a semantic similarity between the derivations of the words, this 
may not apply to compounds. For example, hundemüde (meaning exhausted in 
English) is composed of two words: hund (dog) and müde (tired), which are not 
semantically similar. Moreover, connector sounds might be inserted while combin-

ing different words together in a compound in German language. For example, an 
extra ’e’ letter is inserted in the compound (das) schwein-e-fleisch (meaning pork 
meat). This hinders from obtaining the word embeddings of prefixes in a word in 

7 We used the most frequent 100 morphemes. 
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Table 3. Results obtained from the 10K datasets for Turkish. 
Precision (%) Recall (%) F-measure (%) 

S-MLE unigram (1 iteration) 70.20 25.06 36.93 
S-MLE unigram (2 iterations) 63.33 27.51 38.36 
S-MLE bigram (1 iteration) 57.52 42.27 48.73 
S-MLE bigram (2 iterations) 54.72 42.77 48.01 
S-Unigram MAP 30.25 74.53 43.03 
S-Bigram MAP 33.69 72.82 46.07 
Baseline (most freq.) 35.95 48.94 41.45 

¨ S-Baseline ( Ustün and Can, 2016) 64.41 30.38 41.28 
¨ S-MLE bigram ( Ustün and Can, 2016) 55.56 40.12 46.59 

M-Baseline (Creutz and Lagus, 2002) 68.81 29.40 41.20 
M-CatMAP (Creutz and Lagus, 2005a) 79.69 27.01 40.34 
MorphoChain (Narasimhan et al., 2015) 65.32 20.79 30.18 

Table 4. Results obtained from the 10K datasets for English. 
Precision (%) Recall (%) F-measure (%) 

S-MLE unigram (1 iteration) 3.71 46.09 49.61 
S-MLE unigram (2 iterations) 47.57 52.05 49.71 
S-MLE bigram (1 iteration) 53.96 48.88 51.30 
S-MLE bigram (2 iterations) 44.48 53.56 48.60 
S-Unigram MAP 19.63 82.19 31.69 
S-Bigram MAP 24.83 80.82 37.99 
Baseline (most freq.) 27.84 64.98 38.98 

¨ S-Baseline ( Ustün and Can, 2016) 71.21 37.75 49.37 
¨ S-MLE bigram ( Ustün and Can, 2016) 17.99 41.60 26.74 

M-Baseline (Creutz and Lagus, 2002) 65.06 61.68 63.33 
M-CatMAP (Creutz and Lagus, 2005a) 53.02 71.02 60.71 
MorphoChain (Narasimhan et al., 2015) 77.98 17.20 28.18 

Table 5. Results obtained from the 10K datasets for German. 
Precision (%) Recall (%) F-measure (%) 

S-MLE unigram (1 iteration) 28.17 45.95 34.93 
S-MLE unigram (2 iterations) 27.47 47.82 34.90 
S-MLE bigram (1 iteration) 25.14 50.29 33.52 
S-MLE bigram (2 iterations) 26.09 54.50 35.28 
S-Unigram MAP 12.97 83.00 22.44 
S-Bigram MAP 14.63 81.54 24.81 
Baseline (most freq.) 12.97 76.35 22.17 

¨ S-Baseline ( Ustün and Can, 2016) 28.68 42.80 34.35 
¨ S-MLE bigram ( Ustün and Can, 2016) 17.99 41.60 25.12 

M-Baseline (Creutz and Lagus, 2002) 53.29 42.87 47.51 
M-CatMAP (Creutz and Lagus, 2005a) 19.98 43.12 27.31 
MorphoChain (Narasimhan et al., 2015) 58.08 14.38 23.05 

the initial segmentation. Our model does not perform well for compounds because 
of these two reasons. 
If we compare the baseline models in Turkish, we can see that the baseline model 

that splits off the most frequent morphemes from the end of each word performs 
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Table 6. Results obtained from the 50K datasets for Turkish. 
Precision (%) Recall (%) F-measure (%) 

S-MLE unigram (1 iteration) 69.85 25.06 36.88 
S-MLE unigram (2 iterations) 70.27 25.10 36.98 
S-MLE bigram (1 iteration) 60.54 42.27 49.78 
S-MLE bigram (2 iterations) 56.35 44.35 49.75 
S-Unigram MAP 34.43 59.43 43.61 
S-Bigram MAP 39.70 47.37 43.20 
Baseline (most freq.) 35.11 49.59 41.11 

¨ S-Baseline ( Ustün and Can, 2016) 64.41 30.38 41.28 
¨ S-MLE bigram ( Ustün and Can, 2016) 60.14 40.44 48.36 

M-Baseline (Creutz and Lagus, 2002) 78.67 24.68 37.75 
M-CatMAP (Creutz and Lagus, 2005a) 71.65 29.67 41.96 
MorphoChain (Narasimhan et al., 2015) 71.24 21.26 32.75 

Table 7. Results obtained from the 50K datasets for English. 
Precision (%) Recall (%) F-measure (%) 

S-MLE unigram (1 iteration) 57.83 46.09 51.29 
S-MLE unigram (2 iterations) 50.74 49.61 50.17 
S-MLE bigram (1 iteration) 49.35 48.88 49.11 
S-MLE bigram (2 iterations) 45.63 51.30 48.30 
S-Unigram MAP 29.99 69.58 41.92 
S-Bigram MAP 29.52 66.91 40.96 
Baseline (most.freq) 21.34 74.55 33.18 

¨ S-Baseline ( Ustün and Can, 2016) 71.21 37.75 49.37 
¨ S-MLE bigram ( Ustün and Can, 2016) 50.91 30.84 39.50 

M-Baseline (Creutz and Lagus, 2002) 64.86 65.34 65.10 
M-CatMAP (Creutz and Lagus, 2005a) 29.05 26.36 27.64 
MorphoChain (Narasimhan et al., 2015) 80.62 24.51 37.59 

at par with the semantic baseline model (S-Baseline) (see Table 3 and Table 6). 
However, the semantic baseline model performs slightly better than the baseline 
model using only the most frequent morpheme list on the 50K dataset. In English 
and in German, this difference is much more significant compared to Turkish. The 
results show that using semantic information through the word embeddings has 
a substantial impact on segmentation regardless of the morphological structure of 
the language. However, the final result is still far behind the other methods such 
as Morfessor (Creutz and Lagus, 2002) because of the reasons mentioned above 
for German. In English, there is an extensive usage of irregular words and since 
we assume a concatenative morphology here, still the baseline model and other 
models fall behind the Morfessor (Creutz and Lagus, 2002). In Turkish, the semantic 
baseline model still performs very well compared to the other models, however the 
baseline model using the most frequent morphemes performs as well as the semantic 
baseline model due to the concatenative nature of the baseline algorithm that allows 
to find many of the valid morphemes. 
The results obtained from 10K and 50K training sets show how the size of the 

training set affects the accuracy of the models. Our MLE bigram model outperforms 
other models with a F-measure of 49.78% on Turkish with two further iterations in 
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Table 8. Results obtained from the 50K datasets for German. 
Precision (%) Recall (%) F-measure (%) 

S-MLE unigram (1 iteration) 26.63 45.95 33.72 
S-MLE unigram (2 iterations) 26.90 46.33 34.04 
S-MLE bigram (1 iteration) 22.15 50.29 30.75 
S-MLE bigram (2 iterations) 22.26 53.37 31.41 
S-Unigram MAP 20.88 72.01 32.37 
S-Bigram MAP 24.10 65.79 35.28 
Baseline (most freq.) 10.74 74.69 18.78 

¨ S-Baseline ( Ustün and Can, 2016) 28.68 42.80 34.35 
¨ S-MLE bigram ( Ustün and Can, 2016) 19.17 43.73 26.66 

M-Baseline (Creutz and Lagus, 2002) 59.72 39.53 47.58 
M-CatMAP (Creutz and Lagus, 2005a) 28.33 31.77 29.96 
MorphoChain (Narasimhan et al., 2015) 58.66 15.37 24.36 

parameter estimation. Our unigram and bigram MAP models also perform better 
than other models such as Morfessor Baseline and Morfessor CatMAP on Turk-
ish. Morfessor Baseline outperforms other models on English with a F-measure of 
65.10%. However, our S-MLE unigram model comes the second and outperforms our 
other models. Bigram models improve the results significantly for morphologically 
complex languages, whereas it is not the case in morphologically poor languages 
such as English. Morfessor Baseline outperforms all models again with a F-measure 
of 47.58% on German. Differently from the experiments on smaller training sets, 
our bigram MAP model comes the second and both the semantic baseline model 
and the MLE models outperform Morfessor CatMAP and MorphoChain for Ger-

man. This shows that our model performs better when it is trained larger training 
sets for three of the languages. 
S-MLE method works well for concatenative morphology since it begins from 

the end of the word and gradually strips off the suffixes by using the semantic 
information. English does not have a heavy morphology compared to Turkish so 
it cannot benefit from the semantic segmentation as much as Turkish. The same 
also applies for German but for a different reason. Since German relies heavily on 
compounds, it also cannot benefit from iterative segmentation from the end of the 
word as suggested in the baseline model. 
To sum up, it shows that our model outperforms other models on Turkish in both 

training settings. This shows that using only semantic information gives promising 
results. Our MLE model performs the best among our models on English although 
the highest obtained scores fall behind that of Morfessor Baseline, which outper-
forms all models for English. However, our MLE scores are the highest among all 
models after Morfessor Baseline. For German, Morfessor Baseline is again the best, 
but this time our bigram MAP-based model performs better than other models. 

5.2.1 Analysis of the results 

Regarding the oversegmentation vs undersegmentation in different models, S-MLE 
model seems to be more robust to oversegmentation compared to the S-MAP model 
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in Turkish and English. The precision and recall scores of S-MLE model are bal-
anced, although the precision scores are slightly higher than recall scores for both 
English and Turkish. Morfessor CatMAP (Creutz and Lagus, 2005a) and Mor-

phoChain (Narasimhan et al., 2015) suffer from undersegmentation in all of the 
three languages and therefore the recall scores obtained from Morfessor CatMAP 
and MorphoChain are very low and precision scores are comparably higher although 
the F-measure is fair average among all scores. In contrast, S-MLE model shows a 
different picture for German, where the recall scores are much higher than preci-
sion scores and thereby the model suffers from oversegmentation in German. This 
is actually a similar outcome for German language for all models except Morfessor 
Baseline (Creutz and Lagus, 2002) and MorphoChain (Narasimhan et al., 2015) 
which give a higher precision unlike other models. This is again due to the heavy 
usage of compounds in German and therefore due to very long words that are prone 
to be oversegmented. As for S-MAP model, the precision and recall are less balanced 
compare to S-MLE model. There is a slight oversegmentation issue in both English 
and German, where the recall scores are substantially higher than precision scores. 
However, although the recall scores in Turkish are higher than precision scores 
for the S-MAP model, they are more balanced compared to English and German, 
therefore oversegmentation is not an issue in Turkish for the S-MAP model. 
Some correct and incorrect examples in English, Turkish, and German results are 

given in Table 9, Table 10, and Table 11 respectively. MAP model performs better 
than MLE model, where MLE model is prone to undersegmentation in German. 
However, MLE model performs better in English and Turkish compared to MAP 
model where the MAP model is prone to oversegmentation. 
If we compare three languages from the morphological complexity point of view, 

we can easily claim that Turkish is the most morphological complex language out of 
these languages. This morphological complexity is due to the agglutination where 
each word is composed of many morphemes and the semantics is still preserved 
while deriving new word forms from a root. In English, each word usually takes 2.2 
morphemes in average at the end, however this number in Turkish is 3.3 and it is 3.1 
in German in average (as we analyzed from the test sets). In German, this number 
includes also the number of the additional roots in each word. Therefore, we can 
argue that Turkish is comparably morphologically richer than both English and 
German. Table 9 shows that our models can still learn the correct segmentations 
in English if the roots did not change after the inflection or derivation, such as 
switch+ing, help+less+ness etc. However, we cannot expect from our models to 
work for irregular word forms since we aim to extract the morpheme boundary 
points in each word. English being a language with a heavy usage of irregular word 
forms is also not in the focus of our proposed models. 
In German, the structure is completely different compared to English and Turk-

ish. Words are usually composed of several different roots. Since we are aiming 
to take advantage of using the semantic similarity between derived word forms, 
this is not an advantage for German where semantically unrelated words can come 
together to produce a completely semantically unrelated word. The low German 
results also validate this situation. 
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Table 9. Some segmentation examples for the different models on English 10K 
results. The bold segmentation refers to the correct segmentation. 

S-MLE Unigram S-MLE Bigram S-Unigram MAP S-Bigram MAP 

incline-d incline-d inc-line-d inc-lin-e-d 
critic-ally critical-ly critic-ally critical-ly 
switch-ing switch-ing switch-ing switch-ing 
alt-ernative-s alt-ernative-s alt-er-native-s alt-er-native-s 
pray-ers pray-er-s pray-e-r-s pray-er-s 
help-less-ness help-less-ness help-less-ness help-less-ness 

Table 10. Some segmentation examples for the different models on Turkish 10K 
results. The bold segmentation refers to the correct segmentation. 

S-MLE Unigram S-MLE Bigram S-Unigram MAP S-Bigram MAP 

hük-ü-met-ler-e hük-üm-et-le-r-e hük-ü-m-e-tl-e-re hüküm-et-ler-e 
tan-ım-lar-a tanım-lar-a tanım-lar-a tanım-lar-a 
takım-ı-nın takım-ı-n-ı-n takım-ın-ın tak-ı-mın-ın 
geti-r-dim getir-dim getir-di-m getir-dim 
insan-lık insan-lık insan-lık insan-lık 
kum-aşa kum-a-ş-a kum-aşa kum-aş-a 

We performed also boundary evaluation for the highest scores obtained for En-
glish and Turkish as applied in MorphoChain (Narasimhan et al., 2015). The results 
are given in Table 12. All models are trained on 50K datasets and tested on Mor-

pho Challenge gold segmentations. The boundary evaluation requires the surface 
forms to be evaluated. Since we could not find such a gold standard segmentation 
data for German that has only the surface forms, we did not include the German 
scores for this evaluation. MorphoChain evaluation gives higher scores compared 
to Morpho Challenge evaluation. There are several reasons for this (as explained 
in (Can and Manandhar, 2018)). First, morpheme labels are used in Morpho Chal-
lenge evaluation, which increases the total number of points that is computed over 
all word pairs, and it lowers the scores. Second, only the gold segmentation that has 
the maximum match with the result segmentation is considered in MorphoChain 
evaluation, and not all the given segmentations as in Morpho Challenge. Therefore, 
generally all scores are higher in MorphoChain evaluation. 
In order to compute the upper bound of the methods, we investigated the per-

formance based on the existence of the words in the word embedding space. To this 
end, we performed segmentation if any prefix of the word has a word embedding 
without using any semantic similarity between the prefixes of the word, which will 
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Table 11. Some segmentation examples for the different models on German 10K 
results. The bold segmentation refers to the correct segmentation. 

S-MLE Unigram S-MLE Bigram S-Unigram MAP S-Bigram MAP 

wesentlic-h-er wes-ent-lic-h-e-r wesentlich-er wes-e-nt-li-ch-er 
bus-se bus-se bus-se bus-se 
amtlic-h am-t-lich amt-lich amt-lich 
einlaufe-n einlaufe-n ein-la-ufen ein-lauf-en 
erbos-t-e erbos-t-e erbos-te erb-oste 
bei-n-e-n bein-en bei-n-en bein-en 

give an upper bound for the methods. The upper bound for the F-measure in Turk-
ish is 40.53% if no semantic information is incorporated but only the existence of 
the prefixes of a word is exploited during segmentation, which is lower than 41.28% 
when the semantic similarity threshold is incorporated in the model. This shows 
that the incorporation of the semantic similarity improves the upper bound. We 
also investigated the MLE method’s upper bound analogously. We obtained a F-
measure of 39.69% from the bigram MLE model using 50K training set in Turkish, 
whereas we obtained 48.36% from the bigram MLE model using the semantic sim-

ilarity in the initial segmentations. Results are coherent with the baseline model 
and again it shows that the incorporation of the semantic similarity improves the 
scores significantly. 
We analyzed how many segments in the gold standard are actually represented in 

their word embeddings to see if our method is applicable to other languages. To this 
end, we created a word list from the gold standard set by combining the prefixes 
of each given word. For example, we obtained book, booking and bookings from the 
gold segmentation book+ing+s. As a result, in Turkish, 86% of words in the gold 
standard are represented in the word embedding space. This coverage seems to be 
reasonable to apply our method. In English, this coverage is at around 72% which 
is lower than Turkish and this coverage also might be hindering the performance of 
our method in English. Since the gold segmentations of the German words is not 
provided by Morpho Challenge, we could not compute the coverage of the words in 
the German word embedding space. 

5.2.2 The effect of the word embedding dimensionality 

In order to evaluate the effect of the word embedding dimensionality size on the 
performance of our models, we trained word2vec (Mikolov et al., 2013) for various 
dimensions on Turkish. We again used the manually collected newspaper archives. 
We performed experiments on the unigram and bigram MAP models for dimen-

sions ranging from 50 to 300. Figure 3 shows the F-measure scores for different 
vector dimensions. The scores show that the optimal results are obtained from 100 
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Table 12. MorphoChain (Narasimhan et al., 2015) evaluation for Turkish and 
English. 

TURKISH 
M-CatMAP (Creutz and Lagus, 2005a) 74.12 67.13 70.46 
MorphoChain (Narasimhan et al., 2015) 70.50 67.75 69.09 
S-MLE bigram (1 iteration) 59.49 71.35 64.88 
M-Baseline (Creutz and Lagus, 2002) 71.79 56.67 63.33 

ENGLISH 
MorphoChain (Narasimhan et al., 2015) 71.52 79.94 75.50 
M-Baseline (Creutz and Lagus, 2002) 59.30 78.82 67.68 
S-MLE unigram (1 iteration) 45.18 80.35 57.83 
M-CatMAP (Creutz and Lagus, 2005a) 28.07 80.28 41.59 

Fig. 3. Results obtained from S-Unigram MAP and S-Bigram MAP models on 
Turkish 10K training dataset for different word embedding sizes. 

dimension. Smaller dimensions give poor results and larger dimensions also begin 
to give poorer results when the dimension size is increased gradually. 
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Table 13. F-measures obtained from S-Baseline and S-MLE models on Turkish for 
different cosine similarity threshold values. 

Threshold (d) S-Baseline (%) S-MLE (%) 

0.15 40.51 47.51 
0.25 37.42 47.82 
0.35 30.16 43.58 
0.45 25.14 39.95 

Table 14. The F-scores on Turkish that show the effect of semantic similarity by 
changing the effect of the cosine terms in Equation 11 with various exponent values: 
0.25, 0.5, 0.75, 1 

Threshold (d) 0.25 0.5 0.75 1 1.25 

S-Unigram MAP (%) 43.89 41.81 44.01 43.03 42.24 
S-Bigram MAP (%) 44.66 44.84 47.16 46.07 43.06 

5.2.3 The effect of the semantic similarity 

Additionally, we performed another set of experiments to discover the effect of 
the cosine similarity threshold used in segmentation. Table 13 gives the F-measure 
scores obtained from S-Baseline and S-MLE models. The results show that a cosine 
threshold of 0.25 gives the highest score for the MLE model, whereas 0.15 gives the 
highest score for the baseline model. 
It should be noted that there is not any manually set threshold value in the MAP 

models. In order to measure the effect of the semantic features, we added a non-
negative exponent to all the cosine terms in Equation 11. The results for different 
values of the exponent are given in Table 14 for Turkish. The results show that 
more effect of the semantic similarity is incorporated, the higher the scores are in 
general. However, the scores are the highest when the exponent is reduced to 0.75. 

5.2.4 The effect of using n-gram level word embeddings 

In order to investigate the effect of the word embeddings, we also used fastText 
(Bojanowski et al., 2017) on S-Baseline model using a semantic similarity threshold 
of 0.25. FastText (Bojanowski et al., 2017) is another method to learn word em-

beddings using the n-grams of each word rather than taking each word as a distinct 
unit during learning the embedding space as in word2vec (Mikolov et al., 2013). 
The results obtained for Turkish are given in Table 15. The results obtained from 
fastText are significantly higher than that of the ones obtained from S-Baseline 
that uses word2vec (Mikolov et al., 2013) embeddings in Turkish. We also analyzed 
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Table 15. The F-scores on Turkish that show the effect of using n-gram level word 
embeddings, i.e. fastText Bojanowski et al. (2017) 

Model F-measure (%) 

upper bound - fastText 
upper bound - word2vec 
S-Baseline - fastText 
S-Baseline - word2vec 

40.69 
40.53 
49.72 
41.28 

Table 16. The computation times and memory requirements for the models (S-MLE 
Unigram, S-MLE Bigram, S-Unigram MAP, S-Bigram MAP) trained on Turkish 
10K dataset. 

Computation Time (min.) Memory Requirement (Gb) 

S-MLE Unigram 
S-MLE Bigram 
S-Unigram MAP 
S-Bigram MAP 

2.15 for 1 iteration 
2.28 for 1 iteration 

33.54 for 5000 iterations 
38.41 for 5000 iterations 

10 
10 
10 
10 

the upper bounds of using both word2vec and fastText when the prefixes are seg-
mented if their embeddings exist in the embedding space without incorporating any 
semantic information. The results obtained from fastText is still higher than that 
of word2vec. This shows that using n-gram level word embeddings improves the 
scores significantly, since it also learns the word embeddings out of their n-grams 
and therefore it already incorporates the morpheme level information within the 
embeddings. Moreover, using fastText embeddings shows the semantic similarity 
effect better than the word2vec embeddings. 

5.2.5 Computational times and memory requirements 

The computation times and memory requirements for all the methods are given 
in Table 168 . We performed all the experiments on a server with 24 Intel Xeon 
processors of 2.40GHz. 

8 S-MLE models are trained for one iteration for which the computation time is given, 
whereas the S-MAP models are trained for 5000 iterations and the total required time 
is given. 
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6 Conclusion and Future Work 

We propose two unsupervised frameworks for morphological segmentation by in-
corporating semantic information in MLE and MAP models. Our results show that 
using semantics helps in unsupervised morphological segmentation. A simple base-
line model based on only semantic information can give promising results on a 
language with concatenative morphology. We also show that how semantic infor-
mation obtained from word embeddings can be utilized in a simple MLE or MAP 
model. 
Our models do not require a large dataset for training. The results show that 

our results do not change much if we increase the training set from 10K to 50K. 
Therefore, our models can be trained by using only 10K raw word list, which is 
not annotated. We use pre-trained word embeddings but embedding models do not 
require an annotated dataset but just a raw corpus. Therefore, our model can be 
applied to any low resource language and does not require annotation in advance, 
because it is fully unsupervised. 
In this work, we learn the word embeddings from word2vec (Mikolov et al., 2013). 

We aim to learn the embeddings concurrently with the segmentation of words in 
the future without using any pre-trained word embeddings. 
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