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 30 

Abstract 31 

 32 

Studying nanomaterials' ecotoxicology is not new but there are still gaps in our understanding of their 33 

fate in the environment. A major challenge is lack of reliable tools to measure available 34 

concentrations of nanoparticles (NPs) in soil and water. Diffusive gradient in thin-films (DGT) is a 35 

robust technique for measuring concentration of trace metals in the environment. We have also shown 36 

that it could be potentially developed for measuring ZnO NPs1,2. To further investigate the suitability 37 

of DGT for measuring available concentrations of NPs in soil and water we selected two model 38 

nanoparticles, Ag and TiO2 which are widely used and incorporated in different commercial products. 39 

We aimed to understand (1) if two of the DGT binding agents, Chelex®-100 and Metsorb™, could 40 

irreversibly retain our model NPs and if yes (2) what might be the differences between bound Ag and 41 

TiO2 NPs and Ag+ and Ti4+ cations. We used ATR-FTIR spectroscopy for this purpose and analysed 42 

the IR spectra using principal component analysis and linear discriminant analysis (PCA-LDA), as 43 

our pattern recognition tool. The results show that the DGT resins form chemical bonds with silver 44 

and titanium nanoparticles and their ionic forms. PCA-LDA demonstrates that the binding 45 

mechanisms are statistically different (95% confidence level) among the treatments. The study 46 

indicates DGT potential for measuring available concentrations of NPs in the environment and 47 

suggests that ATR-FTIR spectroscopy combined with computational analysis could potentially 48 

differentiate between chemical species that are retained simultaneously by the DGT device resin 49 

layer. 50 
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1. Introduction 58 

Diffusive gradient in thin-films which is often known as DGT technique is a simple, 59 

yet accurate and reliable approach in measuring time-averaged concentrations of different 60 

chemicals in soil and water 3–6. A DGT device is comprised of two key components; a 61 

diffusive hydrogel layer and a binding layer, which are protected by an external filter 62 

membrane and placed on a plastic base. A plastic cap keeps the filter membrane, the diffusive 63 

(hydrogel) and binding layer in place on top of the plastic base (piston) as illustrated in 64 

Figure 1. The function of each part of the DGT device and detailed features of them have 65 

been described extensively in previous studies 7,8. 66 

 67 

 68 

 69 

 70 

The DGT technique is based on the concept that the target chemical species pass 71 

through the diffusive layer, they are irreversibly retained by the binding resin. With the 72 

Figure 1. Schematic representation of a DGT device and its components in addition to its application in soil and 

water as illustrated in other research.6 
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known thicknesses of the diffusion layer, diffusion coefficients of the retained species, the 73 

surface area of the exposure window, the length of time and ambient temperature during the 74 

DGT deployment, the time averaged concentration of retained chemicals can be determined 75 

using the DGT equation, which is based on the Fick’s law of diffusion.8 76 

A crucial step for measuring the time-averaged concentration of a chemical by DGT 77 

is its ability to pass through the diffusive layer and being retained by the binding layer. In our 78 

previous research we showed that the DGT technique can potentially measure concentrations 79 

of manufactured nanomaterials in the environment2, an approach which was promisingly 80 

repeated in other research using the same principles.9–13 We used combinations of different 81 

membranes and diffusive gels to allow certain sizes of particulate matters to enter the device 82 

for measuring different targeted chemical species.3 The most commonly used diffusive gels 83 

in the DGT technique are agarose, open pore polyacrylamide and restricted polyacrylamide 84 

gels. Each of them has different pore sizes. Some studies suggest that particles as large as 100 85 

nm can diffuse through open pore hydrogel.14 For the binding layers, Chelex®-100, 86 

Metsorb™ and Fe-Oxide gels are often used in the DGT devices.1,2,8 87 

We have previously studied the binding mechanism of ZnO nanoparticles (NPs) and 88 

Zn2+ to Chelex®-100 and Metsorb™ as two commercially available and widely used binding 89 

resins.1,2,5 In this study, we focus on using the same resins for two industrially important and 90 

extensively made nanomaterials16,17; Ag and TiO2 nanoparticles and their ionic forms Ag+ 91 

and Ti4+. Chelex®-100 is an ion-exchange resin with efficient binding surfaces, which stems 92 

from its chemical structure. It includes dicarboxylic acid amine (COOHCH2-NH-COOHCH2) 93 

with carboxyl groups, which deprotonate in relatively low pH values (pH≈4).18 94 

Less information is available about Metsorb™ chemical structure compared to 95 

Chelex®. This commercial material is mainly a titanium oxide-based resin with TiO2 and 96 
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Ti(OH)4 as its main constituents and small quantities of other chemicals including 97 

polymers19. Both titanium oxide/hydroxide constituents in Metsorb™ have a low point of 98 

zero charge (PZC, the pH that overall surface charge is neutral); which make its surface to 99 

pose overall negative surface charge at the pH of natural environments.  These pH values 100 

(PZC) are approximately 4.5 for Ti(OH)4 and 6.0 for TiO2.5,20,21 101 

Both Chelex®-100 and Metsorb™ have been used extensively as binding materials in 102 

the DGT devices for measuring targeted chemical species in soil and water6. We have also 103 

shown that these two resins are capable of retaining ZnO nanoparticles and potentially could 104 

be deployed for measuring nanomaterials in the environment.8,22 The performance of 105 

Chelex®-100 and Metsorb™ and their reliable function as binding materials in the DGT 106 

devices for ionic metals and nutrients have been studied before, nevertheless limited 107 

information is available about potential for nanomaterials.23,24 Studying the biding 108 

mechanisms of chemicals to the aforementioned resins help us to better investigate their 109 

suitability for using in the DGT technique to measure time averaged concentrations of the 110 

nanomaterials in the environment. 111 

The aim of this research is to investigate how Chelex®-100 and Metsorb™ retain four 112 

different chemicals, Ag and TiO2 nanoparticles and their ionic forms Ag+ and Ti4+. For this 113 

purpose, we used attenuated total reflection-Fourier transform infrared (ATR-FTIR) 114 

spectroscopy, followed by principal component analysis (PCA) and linear discriminating 115 

analysis (LDA) to further process ATR-FTIR data. ATR-FTIR spectroscopy is widely used 116 

for exploring chemical interactions at solid-liquid interfaces for both organic and inorganic 117 

samples and as a non-destructive technique.25–27 It will provide information to elucidate the 118 

underlying differences between these nanoparticles and their ionic forms chemical bonds to 119 

the DGT resins. Ag and Ti nano-particles are widely used in different industries as 120 

engineered nanomaterials. Previous studies indicate that after the waste treatment processes, 121 
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they likely re-enter the environment and accumulate in soils as their primary sink. This may 122 

lead to bioaccumulation in microorganisms and plants and affect the food chain.5,28 123 

Measuring these nanomaterials concentrations in soil and water helps us to better understand 124 

their behavior in the environment.  125 

Silver nanoparticles are well-known for their antimicrobial properties and used in 126 

many industries particularly in personal care products and clothing e.g. in textile to eliminate 127 

bacteria and odor. These nanoparticles also have unique physicochemical characteristics (e.g. 128 

electrical and thermal conductivity), which makes them attractive for many industries, for 129 

example food packaging, cosmetics and biomedical related products, that increase their risk 130 

of being released to the environment.29,30 Titanium dioxide nanoparticles are stable in the 131 

environment with desirable photocatalytic properties, they have high refractive index, which 132 

make them excellent white powder pigments, whit extensive applications as coating or paint 133 

materials. Both of these nanomaterials have shown to have adverse environmental impacts 134 

when they are released to the environment, especially in high concentrations, which makes 135 

probing their concentrations in the environment essential. 17 136 

  137 

Experimental section 138 

1. Material and Methods 139 

  2.1 Chemicals 140 

TiO2 was obtained from EVONIK (AEROXIDE® TiO2)31, and Ag nanoparticles were 141 

sourced from Institut Català de Nanotecnologia, Spain. The silver nanoparticles were 142 

polyvinylpyrrolidone (PVP 9.73%) with primary particle size expected to be approximately 143 

25nm. Detailed properties of these Ag nanoparticles, provided by the above-mentioned 144 

supplier, have been described in other studies.16 The primary particle size of the TiO2 NPs 145 
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was expected to be approximately 50nm. Point of zero charge (PZC) of Ag is usually below 146 

pH≈4, while it is about pH≈6 for TiO2 NPs,17,32
 which create respectively negative and 147 

positive Zeta potential (electrokinetic potential) at the surface of these nanoparticles in this 148 

study. Some details can be found in supplementary information (SI). The DGT resin 149 

materials, Chelex®-100 and Metsorb™ were purchased from Bio-Rad and Graver 150 

Technologies. Before each test, fresh stocks of Ag and TiO2 nanoparticles dispersions in 151 

Milli-Q water were prepared, followed by sonication for at least15 minutes. Fresh stocks of 152 

Ag+ was prepared by dissolving Sigma-Aldrich reagent grade Ag(NO3) in Milli-Q water. For 153 

Ti4+ stock solution, acidified Sigma-Aldrich reagent grade TiCl4 was used. 154 

2.2 Sample preparations 155 

Each experimental treatment for ATR-FTIR spectrochemical analysis was prepared in 156 

triplicate. For this purpose, 0.5 g of Chelex®-100 or Metsorb™ (binding materials) was 157 

exposed to 20.0 ml of 1000.0 µg/l of one of six different treatments; (1) Ag NPs, (2) Ag+, (3) 158 

mixture of Ag NPs and Ag+ (500 µg/l each), (4) TiO2 NPs, (5) Ti4+, (6) mixture of TiO2 NPs 159 

and Ti4+ (500 µg/l each), which corresponds to six different spectral classes for each of the 160 

resins. We used high concentrations for each of these treatments to enable reliable detection 161 

by ATR-FTIR spectroscopy. The pH for all the experiments in this study was approximately 162 

5.8. For Ti4+ stock solution, which had been prepared from acidified TiCl4, the pH was 163 

adjusted by adding very diluted NaOH solution (reagent grade). The pH were monitored for 164 

48 hours throughout the experiments.  165 

Each sample of a fresh chemical solution with the resin was shaken for over 3 hours 166 

on a rotary shaker at 150 rpm. Then they were centrifuged for 20 minutes at 3500 rpm and 167 

the supernatant was discarded. The resins were washed by adding 50 ml of Milli-Q water, 168 

shaking for further 30 minutes and centrifugation as before. This process was repeated three 169 
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times to remove residuals that may be attached physically on the resins but not retained by 170 

chemical binding. The samples were dried by pressurized nitrogen gas (0.4 bar) and a small 171 

portion of each dry sample was put on the ATR crystal for ATR-FTIR spectroscopy analysis 172 

as illustrated in Figure 2. The samples prepared for the analysis completely covered the ATR 173 

crystal and provided a thickness of over 3 µm to eliminate any interference that could be 174 

caused by the compression rod that keeps the samples in place. 175 

 176 

 177 

2.3 Spectra acquisition and data processing 178 

A PerkinElmer Spectrum 100 FTIR Spectrometer was used for data acquisitions 179 

(Figure 2). Each experiment was conducted in triplicate and for each sample, 30 spectra were 180 

acquired at 2 cm-1 spectral resolution. The IR spectra covered 600-4000 cm-1 range, were 181 

divided into three different spectral regions: region one 600-800 cm-1; region two, 800-2200 182 

cm-1; and, region three, 2600-4000 cm-1. To compare the spectral classes, baseline corrections 183 

Figure 2. Schematic representation of the experimental procedure. Exposing Chelex®-100 and Metsorb™ to Ag 

and TiO2 NPs suspensions and their ionic forms for spectral acquisition  
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(rubber band) and vector normalization were used for all of the regions for each treatment. 184 

Details of these techniques and available tools to perform these analyses have been described 185 

in previous studies.33–35  186 

Following this step, the spectral data were further processed using principal 187 

component analysis (PCA) coupled with linear discriminating analysis (LDA), which often 188 

referred to as PCA-LDA. PCA and LDA both are statistical procedures and data 189 

transformation techniques used in a range of engineering concepts to classify different data 190 

and identify patterns. PCA can be described as a linear dimensionality reduction method to 191 

project the data into the directions of highest variability (where the data is most spread), 192 

while LDA computes the highest possible discrimination between different classes of data 193 

which helps us to classify the data accurately.36,37 194 

In this study we used PCA to reduce the number of variables in spectral data (i.e., 195 

absorbance intensities at different wavenumbers) to only few factors that can capture >95% 196 

variance of the dataset. If the within-class variation is larger than what is found between 197 

classes, LDA can be applied to the output from PCA to minimize the within-class variation 198 

and maximize between-class variation. This allows us to identify the most important 199 

discriminating information and remove interference from the data as described in previous 200 

research.1,2,33 In other words, this method helps us to identify class differences through the 201 

generation of scores and plots. As seen in the next sections, in an LDA scores plot each 202 

spectrum represents a point in LDA space and classes tend to form clusters. In these clusters 203 

the closeness between points implies spectral similarities while distance signifies class 204 

dissimilarities. Also, the plots can be used to identify chemical bonds distinguishing different 205 

treatment conditions. 206 
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 In addition to IR spectroscopy and pattern recognition analysis, we investigated 207 

binding of Ag and TiO2 NPs on Chelex®-100 and Metsorb™ using scanning electron 208 

microscope (SEM) to provide further evidence for retention of these NPs on the resins (see 209 

ESI for details).   210 

2. Results and Discussion 211 
 212 

Figure 3 and 4 show different regions of IR spectra obtained from Chelex®-100 and 213 

Metsorb™ after their exposure to silver and titanium dioxide nanoparticles and their ionic 214 

forms. As described earlier there are six different spectral classes for each resin, which three 215 

of them belong to silver samples; (1) Ag NPs, (2) Ag+, (3) mixture of Ag NPs and Ag+, and 216 

the other three belong to the titanium treatments; (4) TiO2 NPs, (5) Ti4+, (6) mixture of TiO2 217 

NPs and Ti4+. As seen in these figures clear alterations are observed in different peak 218 

absorbance intensities or slight shifts in wavenumbers. 219 

Both of the resins in this study are known for their abilities to bind cations because of 220 

their surface functional groups.1,8,38 Figure 5 is a schematic representation of potential 221 

chemical bonds that may form between the binding agents and Ag+ and Ti4+ cations. 222 

Chelex®-100 carboxyl and Metsorb™ surface titanium oxide/hydroxide hydroxyl groups can 223 

bind available Ag+ and Ti4+ and irreversibly retain them. Deprotonation of carboxyl groups in 224 

Chelex®-100 occurs normally at pH ≈4.0, thus its overall surface charge in all the 225 

experiments with pH ≈ 5.8 is negative.2,18 Details of Metsorb™ chemical structure is not fully 226 

disclosed, nevertheless we know that titanium oxides, TiO2 and Ti(OH)4 are the main 227 

components of this commercial product with TiO2 dominating.  Metsorb™ point of zero 228 

charge is pH ≈6.019,39 and has overall neutral to slightly positive surface charge under the 229 

current experimental conditions (pH ≈ 5.8). (see ESI for details). 230 
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 231 

Figure 3.  Comparison between derived infrared (IR) spectra for Chelex-100 exposed to the silver and titanium dioxide 
treatments. The IR spectra (600−4000cm−1) is divided into three spectral regions: Region 1 (600−800 cm−1), Region 2 
(800−2200 cm−1), and region 3 (2600−4000 cm−1) for comparison purpose. 
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  232 

  233 

 234 

 235 

 236 

Figure 4.  Comparison between derived infrared (IR) spectra for Metsorb exposed to the silver nanoparticle 
and Ag+ treatments. The IR spectra (600−4000cm−1) is divided into three spectral regions: Region 1 
(600−800 cm−1), Region 2 (800−2200 cm−1), and region 3 (2600−4000 cm−1) for comparison purpose (see 
ESI for IR spectroscopy results of Metsorb exposed to titanium dioxide nanoparticles) 



 13 

 237 

 238 

 239 

 240 

Figure 5. Schematic representation of some of the major chemical bonds that could form between Chelex-100 carboxyl 
group with Ag+ and Ti4+ (A). Chemical structure of Chelex-100, its deprotonation and carboxyl group potential vibrations (B). 
some of the major chemical bonds that could form between Metsorb with Ag+ (C). Also, potential bond formation between 
the surfaces of Ag, TiO2 NPs and Chelex-100 or Metsorb have been illustrated on the left side of this Figure. 
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It’s worth noting that at any given pH, both protonated and deprotonated functional 241 

groups exist at the same time on the resin surface, but their ratio is affected by the 242 

concentration of protons. 26,40 Deprotonated surface functional groups on Chelex®-100, 243 

carboxyl groups as seen in Figure 5, could bind Ag+ or Ti4+ directly. Also, two adjacent 244 

carboxyl groups are able to chemisorb these cations, while hydroxyl and carbonyl groups 245 

together could form complexes with them. Ag NP carries overall negative surface charge in 246 

this experiment. Its surface includes oxidized, protonated and deprotonated sites that co-exist 247 

at the same time on an Ag NP surface. Chemical bonds could form between protonated 248 

surface hydroxyl groups of Ag NPs and deprotonated carboxyl. Other bindings between 249 

structural Ag at the surface of Ag NP and carboxyl carbonyl and hydroxyl groups are also 250 

possible. The same happens when Chelex®-100 is exposed to TiO2 NPs, however, we know 251 

that majority of hydroxyl groups formed on the surface of titanium dioxide nanoparticles are 252 

protonated in this study, which could lead to stronger bond formation and retention of this 253 

nanoparticle by Chelex®-100. 254 

As illustrated in Figure 5, Metsorb™ surface deprotonated hydroxyl groups could form 255 

chemical bonds with Ag+. To lesser extent compatible bindings could happen between 256 

Metsorb™ constituent chemicals as well as its surface functional groups with Ag NPs 257 

(structural silver and protonated and deprotonated surface hydroxyl groups that form on this 258 

nanoparticle surface).1,26,27,40  259 

The afore-mentioned bonding characteristics should be reflected in the vibrational 260 

changes of IR spectra of the samples.27,41 Figure 3 and 4 represent IR spectra of these 261 

chemicals in more details. In spectral region one (600-800 cm-1), Chelex®-100 treatments 262 

result in a notable alteration at ≈700 cm-1 with clear distinction (peak intensities and slight 263 

shift in wavenumbers) between the different classes of spectra, but changes for peak at ≈760 264 

cm-1 seems to be negligible. Interestingly, for Chelex®-100 silver and titanium treatments 265 
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show different patterns. At ≈700 cm-1 Ag NPs and the mixture of Ag NPs and Ag+ have 266 

stronger peak (more absorbance) compared to Ag+. For the titanium samples, we have an 267 

opposite behavior and Chelex®-100 exposed to Ti4+ has a stronger peak compared to TiO2 NP 268 

or mixture of Ti4+ and TiO2 NPs. The peak at ≈760 cm-1 is broader, has considerably less 269 

strength compared to the one at ≈700 cm-1 and the observed changes are minor (because of 270 

the similarities of the peak intensities). These peaks can be assigned to C-H and N-H 271 

vibrations, respectively.25,42  272 

The differences between theses peaks at ≈700 cm-1 could be stemmed from stronger 273 

polarity of chemical retention that happens between C-H and Ag NP. Higher number of the 274 

same chemical bonds between the resin and Ag NPs, could also contribute to the higher peak 275 

intensity. In contrary, it seems that for Chelex®-100 titanium treatments, it is Ti4+ that creates 276 

a stronger dipole moment and therefore stronger peak. For Metsorb™, the skewed broad peak 277 

that is extended to ≈800 cm-1 can be attributed to metal oxygen bond vibrations that are 278 

present in the titanium oxide in Metsorb™.2,43 279 

In region two of the spectra, Chelex®-100 treatments show alterations at ≈900 cm-1 (C-H 280 

out-of-plane bending), ≈1330 cm-1 (O-C stretching), ≈1400 cm-1 (C-O-H in plane bending), 281 

≈1430 cm-1 (O=C-O stretching of carboxylate group), ≈1500 cm-1 (N-H bending), and ≈1620 282 

cm-1 (C=O stretching)25,26,42These changes suggest variations in strength of chemical bonds 283 

between oxygen (from C-O, O=C-O and C=O) and; Ag+ or Ti4+, structural Ag of Ag NPs or 284 

Ti of  TiO2 NPs, or the surface hydroxyl groups formed on these nanoparticles. As described 285 

earlier Metsorb™ is mainly made of titanium oxide, however, has some impurities including 286 

ethanol (C2H4O) 2,19. Bands in the second region of this resin’s spectra at ≈1100 cm-1, ≈1350 287 

cm-1 and ≈1440 cm-1 are likely because of C-OH stretch, C-OH and O-H in-plane bend, 288 

respectively. 25,42,43  From these peaks it could be conferred that the surface hydroxyl groups 289 

are involved in bond formations with Ag+ and/or Ag NPs. The peak at ≈1650 cm-1 can be 290 
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attributed to the bending mode of H-O-H, raised from vibration of water or protonation of 291 

surface hydroxyl groups.44  292 

For Chelex®-100 we see a broad O-H stretch peak in the region three, which spans from 293 

≈2800 cm-1 to ≈3600 cm-1, N-H stretching vibrations at ≈3400 cm-1 could also contribute to 294 

this peak. Symmetric and asymmetric stretching of C-H and =C-H stretching could be the 295 

reason for multiple bands seen at ≈2850 cm-1, ≈2920 cm-1 and ≈3030 cm-1.27 For Metsorb™ 296 

spectra in region three O-H stretching can be identified as a broad peak at ≈3100-3600 cm-1 297 

and the other peak, which appears at ≈2950 cm-1 can be assigned to Ti-OH bending.43 298 

Changes in intensities and shifts in these wavenumbers could be the result of the variations in 299 

electrostatic attractions between Ag+ and structural Ag, surface hydroxyl groups of Ag NPs 300 

with functional groups of these vibrational bands. 1,2 As mentioned earlier, in addition to 301 

stronger dipole moments between the bound entities, an increase in peak intensity could be 302 

attributed to a rise in the number of functional groups and surface sites associate with the 303 

chemical bonds that lead to the observed differences among the samples 304 

Figure 6 and 7 are 3-D scores plots that exhibit PCA-LDA of absorbance spectra from 305 

Chelex®-100 and Metsorb™. Details of this computational analysis method are available in 306 

previous publications.2,33–35 As seen multivariate analysis suggests that silver treatments and 307 

titanium samples form distinguishable and separate clusters of data in both Chelex®-100 and 308 

Metsorb™, which indicate that components of each of these groups have clear differences 309 

with each other. In these Figures the 3-D scatter plots separate analyzed (PCA-LDA) IR 310 

spectra based on their characteristic differences in their absorbance. 1,2,33 These analyses 311 

demonstrate that for derived spectra for Chelex®-100 all of the treatments ; (1) Ag NPs, (2) 312 

Ag+, (3) mixture of Ag NPs and Ag+, (4) TiO2 NPs, (5) Ti4+, (6) mixture of TiO2 NPs and 313 

Ti4+, are statistically different at the 95% confidence level (for more details see ESI). In other 314 

words, these six different spectral classes show statistically different absorbance. For 315 
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Metsorb™,  as Figure 7 demonstrates, silver samples form three different clusters, which are 316 

separated from each other. This segregation indicates that Metsorb™ spectra for these 317 

treatments have different characteristics.  318 

In this study the binding mechanisms of the two nanoparticles and their ionic forms to 319 

Chelex®-100 and Metsorb™ are affected by the strength and number of chemical bonds 320 

formed between them. For Ag+ and Ti4+ the resins are attracting readily available cations, 321 

which have similar size to the binding sites on these resins, but for Ag and TiO2 NPs they are 322 

interacting with structural Ag and Ti or functional groups formed on their surfaces including 323 

hydroxyls. In addition, Ag NPs carry over all negative surface charge at the pH of the 324 

experiment while TiO2 NPs have overall positive surface pH dependent charge in this 325 

experiment (see ESI). Such surface charges influence electrostatic interactions that happen 326 

between Chelex®-100 with negative surface charge and Metsorb™ with neutral to slightly 327 

positive surface charge at the pH of the experiment (pH≈5.8). When Chelex®-100 or 328 

Metsorb™ is exposed to Ag or TiO2 NPs chemisorption occurs between two surfaces, with 329 

impacts on the polarity of chemical bonds forming between the two entities as well as the 330 

number of functional groups involved in sorption of the NPs, which both influence intensities 331 

of the absorbance peaks in the IR spectra. This is compatible to what we observed in the IR 332 

spectra of the treatments and deducted through computational analysis and pattern 333 

recognition using PCA-LDA technique. It’s worth highlighting that this research provides a 334 

key finding with respect to diffusive gradients in thin-film (DGT) technique and confirms 335 

that Chelex®-100 or Metsorb™ resins, which are of the most common binding materials in 336 

DGT devices, are able to form chemical bonds with two of the most extensively used 337 

nanomaterials in the world. Considering the well-established DGT technique for measuring 338 

time-averaged concentrations of chemicals in the environment, the findings here could pave 339 

the road for further development of DGT for measuring Ag and Ti nanoparticles in the 340 
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environment and helping us to improve our understanding of the fate and the behavior of 341 

these materials in nature. In addition to ATR-FTIR spectroscopy and PCA-LDA analysis, we 342 

have also used scanning electron microscope (SEM) imaging. The SEM images showed the 343 

presence of Ag and TiO2 nanoparticles on the Chelex®-100, however because of the physical 344 

appearance and porous structure of Metsorb™ we couldn’t identify these nanoparticles on the 345 

surface of this resin. The results can be seen in electronic supplementary information (ESI).  346 

 347 
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 348 

Figure 6.  Three-dimensional scores plot visualization of principal component analysis and linear 349 
discriminant analysis (PCA-LDA) of Chelex-100 when exposed to Ag and TiO2 treatments R1 (600−800 cm−1), 350 
R2 (800−2200 cm− 1), and R3 (2600−4000 cm− 1), respectively, represent three spectral regions of the 351 
spectra. Scales for X, Y, and Z-axis are arbitrary units. The graphs on the right show the top views of these 352 
scores’ plots. 353 



 20 

 354 

 355 

 356 

Figure 7.  Three-dimensional scores plot visualization of principal component analysis and linear 357 
discriminant analysis (PCA-LDA) of Metsorb when exposed to Ag treatments R1 (600−800 cm−1), R2 358 
(800−2200 cm− 1), and R3 (2600−4000 cm− 1), respectively, represent three spectral regions of the spectra. 359 
Scales for X, Y, and Z-axis are arbitrary units. The graphs on the right show the top views of these scores’ 360 
plots. (see ESI for PCA-LDA scores plot visualization of Metsorb exposed to titanium dioxide nanoparticles) 361 

 362 
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 363 

1. Conclusions 364 

This research shows that Ag and TiO2 nanoparticles form chemical bonds with Chelex®-365 

100 and Metsorb™, which are two commonly used binding resins in diffusive gradients in 366 

thin-film (DGT) method. It is reinforcing our previous findings about DGT potential for 367 

measuring engineered nanomaterials in soil and water1,2and is compatible with other studies. 368 

9–13This study also suggests that ATR-FTIR spectroscopy in combination with principal 369 

component analysis (PCA) and linear discriminating analysis (LDA), or other pattern 370 

recognition methods, could be developed to identify different types of chemicals retained by 371 

the binding resins. These give the confidence for using DGT technique measuring 372 

nanoparticles in the environment. However, further tests that include investigating diffusional 373 

characteristics of model Ag and TiO2 in the DGT diffusive layers and the performance under 374 

a range of environmental conditions are required. of the further development of the DGT 375 

technique for measuring engineered nanomaterials in situ in soils and waters would allow us 376 

to have a better understanding of their behavior in the environment.  377 

Supporting Information 378 

Electronically supplementary information available: Surface potential of Ag and TiO2 NPs 379 

used in this experiment. Derived infrared (IR) spectra for Metsorb exposed to the titanium 380 

dioxide nanoparticle treatments. Three-dimensional scores plot visualization of principal 381 

component analysis and linear discriminant analysis (PCA-LDA) of Metsorb exposed to TiO2 382 

treatments.Two-D visualization of principal component analysis and linear discriminant 383 

analysis (PCA-LDA) of Chelex®-100 and Metsorb™ when exposed to silver samples; (1) Ag 384 

NPs, (2) Ag+, (3) mixture of Ag NPs and the titanium treatments; (4) TiO2 NPs, (5) Ti4+, (6) 385 
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mixture of TiO2 NPs and Ti4+. Scanning electron microscope (SEM) imaging of Chelex®-100 386 

and Metsorb™ exposed to Ag and TiO2 NPs. 387 
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