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Structured Abstract

Objective:

Next-generation audiovisual (AV) hearing-aids stand as a major enabler to realise
more intelligible audio. However, high data rate, low latency, low computational
complexity, and privacy are some of the major bottlenecks to the successful
deployment of such advanced hearing-aids. To address these challenges, we
propose a novel framework based on an integration of 5G Cloud-Radio Access
Network (C-RAN), Internet of Things (IoT), and strong privacy algorithms to
fully benefit from the possibilities these technologies have to offer.

Background:

Existing audio-only hearing-aids are known to perform poorly in noisy situations
where overwhelming noise is present. Current devices make the signal more
audible but remains deficient to restore intelligibility. Thus, we need hearing
aids that can selectively amplify the attended talker or filter out acoustic clutter.

Methods:
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The proposed 5G IoT enabled AV hearing-aid framework transmits the encrypted
compressed AV information and receives encrypted enhanced reconstructed
speech in real-time to address cybersecurity attacks such as location privacy
and eavesdropping. For security implementation, a real-time lightweight AV
encryption is proposed, based on a piece-wise linear chaotic map (PWLSM),
Chebyshev map, and a secure hash and S-Box algorithm. For speech enhancement,
the received secure AV (including lip-reading) information in the cloud is used
to filter noisy audio using both deep learning and analytical acoustic modelling.
To offload the computational complexity and real-time optimization issues,
the framework runs deep learning and big data optimization processes in the
background on the cloud.

Results:

The effectiveness and security of our proposed 5G-IoT-enabled AV hearing-aid
framework are extensively evaluated using widely known security metrics. Our
newly reported, deep learning-driven lip-reading approach for speech enhance-
ment is evaluated under four different dynamic real-world scenarios (cafe, street,
public transport, pedestrian area) using benchmark Grid and ChiME3 corpora.
Comparative critical analysis in terms of both speech enhancement and AV en-
cryption demonstrate the potential of our envisioned technology to deliver high
quality speech reconstruction and secure mobile AV hearing aid communication.

Conclusion:

We believe that the proposed 5G IoT enabled AV hearing aid is an effective
and feasible solution and represents a step change in the development of next
generation multimodal digital hearing aids. The ongoing and future work
includes more extensive evaluation and comparison with benchmark lightweight
encryption algorithms and hardware prototype implementation.
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1 Introduction
Hearing impairment is a hidden disability with no painful symptoms. People
with serious hearing-loss find themselves socially isolated and depressed with
more negative consequences including headaches, muscle tension, increased
stress, insecurity, and sadness [1]. Hearing aids are the most widely used
devices for the majority of hearing losses compensation. The global hearing aid
industry, estimated around US $6.97 billion in 2017, is expected to grow at 7
percent (compound annual growth rate) by 2022, reaching USD 9.78 Billion,
according to the market research firm MarketsandMarkets [2]. However, existing
hearing aids often perform poorly for speech in noise. Current devices make
the signal more audible but remains deficient to restore intelligibility i.e., no
improvement in SNR. Thus, the existing audio-only hearing-aids are not robust
to reverberation; therefore, intelligibility wins at the cost of higher cognitive load
in noisy environment [3][4].

Despite decades of research, only few speech enhancement algorithms could
reliably increase the intelligibility of speech in noise, especially in extreme noisy
conditions such as cocktail party. A limited number of research developments
in the field of speech enhancement have been implemented into commercially
available hearing-aids. For example, spectral subtraction can be very effective in
stationary conditions, but the processed speech remains unintelligible. In case
of multiple microphones availability, beamforming algorithms can possibly lead
to improvements in speech intelligibility. However, such approaches are hard to
employ in an unpredictable noisy situations. Recent advances have enabled high
data rate and low-latency wireless solutions, which have primarily reformed the
innovation direction of the hearing industry. Nevertheless, even sophisticated
commercial HAs e.g., latest low-latency and low-cost Bluetooth-enabled HAs,
are based on audio-only processing, which remain ineffective in noisy situations.
Consequently, existing audio-only hearing aid approaches achieve benefit just
by simply amplifying signal and offering very little advantage for speech in high
levels of noise [5].

Human performance in noisy environment is known to be dependent upon
both aural and visual cues, which are combined by sophisticated multi-level
integration strategies to improve intelligibility. The multimodal nature of the
speech is well established in literature, and it is well understood how speech is
produced by the vibration of vocal folds and configuration of the articulatory
organs. The correlation between the visible properties of the articulatory organs
(e.g., lips, teeth, tongue) and speech reception has been previously shown in
numerous behavioural studies [6][7][8][9]. Therefore, a clear visibility of some
articulatory organs could be effectively utilized to extract a clean speech signal
out of a noisy audio background. The biggest advantage of using visual cues to
extract clean audio features is their inherent noise immunity [10].
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Nevertheless, embracing the multimodal nature of speech presents both
opportunities and challenges for hearing assitive technology. The real-time
implementation of AV hearing-aid demands for high datarate, low latency, low
computational complexity, and high security. To address these requirements, IoT
stands as a major enabler. However, the growth of IoT raises new radio resource
management (RRM) challenges in resource constrained wireless communication
systems. Existing wireless systems remain deficient to comply with the huge
connectivity requirements of IoT. In contrast, 5G wireless networks address
this limitation by exploiting emerging wireless technologies including mmWave,
massive MIMO, and C-RAN [11]. In addition, researchers have recently proposed
several potential data delivery approaches. For example, the authors in [12]
presents an overview and importance of 5G small cell technology to provide high
data rate and further improve coverage and capacity in a cost effective manner.
Other recently proposed relevant approaches include [13][14][15]. Similarly,
researchers have proposed new approaches to address security issues such as [16]
where the authors proposed a confidential smart-sensing framework in the IoT
era with authentication, confidentiality and integrity features.

In this paper, we propose a novel integration of AV speech enhancement
technology, 5G, IoT, and strong privacy algorithms. The AV speech enhancement
technology is comprehensively presented in our previous works [17][18]. For
communication, 5G C-RAN [11] is proposed, which is a widely accepted IoT
solution for high data rate, coverage, capacity, and energy efficiency [11]. For
security, the lightweight chaotic encryption is proposed and evaluated in this
paper. The proposed 5G IoT enabled AV hearing-aid framework is envisioned to
address challenges such as cybersecurity attacks (location privacy, eavesdropping),
interference between medical IoT devices (that can cause hearing-aids to operate
incorrectly with potentially life threatening consequences), low-cost wireless
technology design, low power consumption, limited battery, and high datarate
requirement. Inspired by our previous work [19], the novel wireless hearing-aid
framework offloads the computational complexity and real-time optimization
issues by running deep learning and big data optimization algorithms in the
background on the cloud. The hearing-aid transmits the encrypted compressed
audio/visual information to the cloud and receives encrypted enhanced recon-
structed speech in real-time. The hearing-aid connects to an indoor 5G wireless
access point and back/fronthaul core network that serves as the communication
infrastructure of the system.

The rest of the paper is organized as follows: Section 2 presents the proposed
5G IoT enabled AV-hearing aid framework. Section 3 presents the proposed real-
time lightweight chaotic encryption algorithm. Section 4 explains the proposed
speech enhancement framework including designed enhanced visually derived
Wiener filter (EVWF) and long-short term memory (LSTM) based lip-reading
regression model. In Section 5, the used AV datasets and feature extraction
methodologies are presented. Section 6 presents the performance evaluation
of the proposed AV encryption and speech enhancement algorithms. Finally,
Section 6 concludes this work.
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2 5G IoT enabled Audio-Visual Hearing-Aid Frame-
work

Modern digital hearing aids are marvels of sophisticated engineering. To hear
modern audio, a low-latency and high datarate wireless solution is needed
that would enable in-ear hearing devices to connect seamlessly [20]. In this
article, a novel 5G IoT enabled audiovisual hearing-aid framework is proposed
to acquire desired high quality processed speech in noisy environments. An
example of state-of-the-art 5G IoT architecture is shown in Figure 1. The IoT
enabled devices, supporting a wide variety of applications, to connect to the
Internet, utilizing gateway for connectivity. For gateway design, different access
technologies such as WiFi and 4G LTE could be used. However, they both are
incapable of supporting thousands of connected IoT devices. WiFi suffers from
packet collision and limited quality of service (QoS), whereas 4G LTE suffers
from high delay and high packet loss for large number of users [11]. In addition,
the wireless systems operating in unlicensed frequency bands require additional
network equipment, resulting extra operation and capital expenditures. The
unlicensed solutions are also prone to congestion with exponential increase in
IoT deployment. In contrast, the next generation 5G wireless networks [21][22]
are capable of providing higher datarates, enhanced mobile coverage, improved
user experience at relatively lower cost and dense connectivity [23]. Furthermore,
to address aggravating detrimental greenhouse (CO2) gas emissions due to
ultra-dense 5G wireless networks and increased network’s energy consumption,
5G C-RAN is a widely accepted solution that enables improved environmental
sustainability, OPEX, resource management, and energy efficiency [11].

Figure 1: 5G IoT Architecture
The proposed 5G IoT enabled AV hearing-aid framework is depicted in Figure

2. It is to be noted that the computational complexity and real-time processing
issues due to deep learning and big data optimization algorithms are addressed
by running them in the background on the cloud. The mobile hearing-aid only
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Figure 2: Proposed 5G IoT enabled Audio-Visual Hearing-Aid Framework

Figure 3: Proposed Lip-Reading Driven Deep Learning Approach for Speech
Enhancement

transmits the encrypted compressed AV information and receives encrypted
enhanced reconstructed speech in real-time. For end-to-end communication, an
indoor 5G wireless small sized cell and back/fronthaul core network are proposed
as the communication infrastructure of the system [24]. For IoT gateway, we
propose the use of an efficient IoT gateway over 5G wireless system, developed
and tested in [11]. Specifically, we propose the use of efficient IoT gateway over
5G wireless exploits small cells (with only 200 m radius), aggressive modulation
and coding schemes (MCSs), massive MIMO, and high-frequency mmWave
band (ranging from 3 to 300 GHz). It is to be noted that a small fraction
of available mmWave spectrum is capable of supporting 100x more data rate
and user capacity as compared to the state-of-the-art cellular spectrum [7, 8].
The proposed use of 5G CRAN with existing cloud computing services has the
capacity to support thousands of connected devices in real-time.

The developed IoT gateway in [11] promises the uplink latency of 10ms and
5ms with and without compression respectively. In addition, it ensures minimum
interference between medical IoT devices with low power consumption. The
novelty of these gateways lie in efficient uplink IoT traffic classification and
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optimal uplink data (traffic) compression strategies. This helps in relaxation of
uplink traffic burden and results in efficient utilization of uplink wireless resources.
More details on 5G-CRAN and front/backhaul connectivity are comprehensively
presented in [11]. Ongoing and future work includes the software integration of
the proposed AV mobile hearing aid with 5G-CRAN and cloud computing as
well as its hardware prototype implementation for real-time testing.

For real-time lightweight audio-visual encryption, piece-wise linear chaotic
map (PWLCM), Chebyshev map, secure hash algorithm and a novel S-Box
algorithms are utilized. In the literature, conventional encryption approaches
such as advanced encryption standard (AES) and Rivest–Shamir–Adleman
(RSA)/Elliptic Curve (signing) are suitable for high processing power systems but
incompatible with embedded low power sensor networks. Therefore, lightweight
cryptography can potentially address real-time encryption challenges [25]. In
our proposed scheme, the encrypted audio and video signals are exploited in
the cloud by the designed novel lip-reading driven speech enhancement system,
depicted in Figure 3. The proposed speech enhancement approach leverages the
complementary strengths of both deep learning and analytical acoustic modelling
(filtering based approach) that operates at two levels. In the first level, a novel
deep learning based lip-reading regression model is employed. In the second level,
lip-reading approximated clean-audio features are exploited, using an EVWF,
for estimating the clean audio power spectrum. Finally, the Wiener filter is
applied to the magnitude spectrum of the noisy input audio signal, followed by
the inverse fast Fourier transform (IFFT), overlap, and combining processes to
produce enhanced magnitude spectrum. More details are presented in Section 4.
The proposed AV speech enhancement framework finally transmits the enhanced
encrypted speech to the mobile hearing-aid.

3 Proposed Real-Time Lightweight Chaotic En-
cryption

In the proposed scheme, PWLCM, Chebyshev map, SHA and a novel S-Box
algorithms are effectively used for real-time lightweight encryption. The applied
transformations are briefly explained in the subsequent sections.

3.1 Applied Transformations
3.1.1 PWLCM

As outlined in shannon novel paper [26], a good encryption scheme is composed
of two stages: (i) Confusion and (ii) Diffusion. In confusion stage, a correlation
between key and ciphertext is made complex. Diffusion means that a minor
change in plaintext should change the corresponding ciphertext significantly.
The proposed algorithm uses PWLCM in confusion process. The PWLCM can
be written as:
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yn+1 = f(yn; �) =

8><>:
yn
� ; if yn 2 [0; �]

1−yn
1−� ; if yn 2 (�; 0:5]

F (1� yn); if yn 2 (0:5; 1];

(1)

where, yn are pseudo-random chaotic values, yn 2 (0; 1), and � is the control
parameter. Both � and y0 serve as an initial condition and called as key for
chaotic pseudo-random number generation.

3.1.2 Chebyshev Map

In [27], Huang et al., proposed a novel key generator method using Chebyshev
map. The Chebyshev map can be defined mathematically as [27, 28]:

Tk(x) = cos(k � arc cos(x)); (2)

where k = 0, 1, 2, ...,N and x 2 [�1; 1]. Huang suggested k = 4 for less
computation and better use of Chebyshev which has been used in the proposed
scheme, the Chebyshev function is given as:

f(xi) = 8x4
i−1 � 8x2

i−1 + 1; i = 1; 2; ::::N (3)

3.1.3 Logistic-Sine Map

To overcome the drawbacks of one-dimensional (1D) Logistic map, Zhou et al., in
[29] proposed a novel method of chaotic maps combination. For a larger chaotic
map, the authors combined two exiting 1D Logistic and Sine maps. Logistic-sine
map is mathematically defined as [29]:

zn+1 = (rzn(1� zn) + (4� r)sin(�zn)

4
)mod(1); (4)

3.1.4 Secure Hash Algorithm (SHA)

SHA generates a fix length value known as a hash code by applying some function
to the plaintext message. In the literature, SHA has different variants depending
on the size of the output e.g, SHA-1, SHA-256 and SHA-512 for 128, 256, and
512 bits outputs, respectively. In the proposed scheme, we used SHA-512 such
that H(m) = h(512 bits). Secret Key in the proposed scheme is dependent on
SHA-512. A minor change in the plaintext generates a completely different hash
and different initial key parameters.

3.1.5 Affine Transformation

Affine transformation is a one to one mapping that transforms a unique plaintext
into a unique symbol. The following affine transformation is used in the proposed
scheme:
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AT (w) =

266666666664

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
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1 1 1 1 0 0 0 1

377777777775
�
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w7
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w4
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w1

w0
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�
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0
1
1
0
0
0
1
1

377777777775
(5)

where wi are coefficients of w i.e multiplicative inverse modulo (w8 + w4 + w2 +
w1 + 1).

3.2 Image Encryption Scheme
The flow chart for the grayscale images using PWLCM, Chebyshev, SHA-512 and
affine transformation is shown in Figure 4. The detailed steps of our proposed
cryptosystem are as follows:

Figure 4: Proposed image encryption algorithm.
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� Step 1: Convert colour image Ic of size A�B to gray-scale image Ig and
save result in  .

� Step 2: Apply SHA-512 on gray-scale plaintext image  and save hex-
adecimal hash value in variable �.

� Step 3: Select first and last 12 hash values and save in �1 and �2.

� Step 4: Convert hexadecimal values saved in �1 and �1 to decimal values
and store result in �1, and �2, respectively.

� Step 5: Generate SHA-based initial conditions for PWLCM and Chebyshev
using following equations:

y0 =
�1

248
(6)

x0 =
�2

248
(7)

� Step 6: Iterate PWLCM A times and store chaotic values in �. Randomly
permute rows of gray-scale image Ig using the sequence � and save values
in Irp.

� Step 7: Iterate Chebyshev map B times and store chaotic values in �.
Randomly permute columns of Irp using the sequence � and save values
in Ipermuted

� Step 8: Iterate Logistic-sine map A�B times and store random values
in 
.

� Step 9: Apply following operations on 
:

R1 = Mod(
 � 1014; 256); (8)

R2 = floor(R1): (9)

� Step 10: Rearrange row-vector R2 in matrix form R and Bit-wise XOR
random matrix R with Ipermuted to get �.

� Step 11: Apply affine transformation on � and store values as a ciphertext
image C.

For decryption, encryption steps are followed in the reverse order.

3.3 Audio Encryption Scheme
The flow chart for the audio signal using PWLCM, Chebyshev, SHA-512 and
affine transformation is shown in Figure 5. The detailed steps of our proposed
cryptosystem are as follows:

� Step 1: Convert 1D audio signal into 2D of size A�B and save result in
 .
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Figure 5: Proposed audio encryption algorithm.

� Step 2: Apply SHA-512 on  and save hexadecimal hash value in variable
�.

� Step 3: Select first and last 12 hash values and save in �1 and �2.

� Step 4: Convert hexadecimal values saved in �1 and �1 to decimal values
and store results in �1, and �2, respectively.

� Step 5: Generate SHA-based initial conditions for PWLCM and Chebyshev
using equations (6-7)

� Step 6: Iterate PWLCM A times and store chaotic values in �. Randomly
permute rows of audio vector Ag using the sequence � and save values in
Irp.

� Step 7: Iterate Chebyshev map B times and store chaotic values in �.
Randomly permute columns of Arp using the sequence � and save values
in Apermuted
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� Step 8: Iterate Logistic-sine map A�B times and store random values
in 
.

� Step 9: Apply operations given in equations (8-9) to 
.

� Step 10: Rearrange row-vector R2 in matrix form R and Bit-wise XOR
random matrix R with Apermuted to get �.

� Step 11: Apply affine transformation on � and store values as a ciphertext
audio C.

For decryption, encryption steps are followed in the reverse order.

4 Speech Enhancement Framework
The state-of-the-art VWF and designed EVWF are depicted in Figure 6 (a) and
(b) respectively. The authors in [10] presented a hidden Markov model-Gaussian
mixture model (HMM/GMM) based two-level state-of-the-art VWF for speech
enhancement. However, the use of HMM/GMM models for the estimation of
clean audio features from visual features and cubic spline interpolation for the ap-
proximation of high dimensional clean audio power spectrum from the estimated
low dimensional audio features are not the optimal choices. The HMM/GMM
model suffers from poor generalization and cubic spline interpolation method
fails to estimate the missing power spectral values that leads to a poor audio
power spectrum estimation. In contrast, the designed EVWF addressed the
limitations of state-of-the-art VWF [10] by employing an inverse filter-bank
transformation (i.e. a pseudoinverse of the approximated audio features) for
audio power spectrum estimation as compared to the cubic spline interpolation
method. In addition, the use of LSTM addressed the generalization and accurate
clean speech coefficient estimation issues. The designed EVWF also eliminates
the need for voice activity detection (VAD) and noise estimation. More details
are comprehensively presented in our previous work [18]

4.1 Lip Reading Model
The designed LSTM based lip-reading model consists of input layer, two LSTM
layers, and output dense layer. In the designed LSTM model, prior visual features
were feeded into the stacked LSTM layers to exploit the existing temporal
correlation. The lower LSTM layer used 250 cells for encoding the input visual
information and passed its hidden state to the second LSTM layer, which has
300 cells. The output of the second LSTM layer was then feeded into the fully
connected (dense) layer which has total 23 neurons with linear activation function.
The designed LSTM model was trained with the objective to minimise the mean
squared error (MSE) between the predicted and the actual audio features using
stochastic gradient decent algorithm and RMSProp optimiser. More dataset,
pre-processing, and training/testing details are comprehensively presented in
our previous works [17][18].
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(a) State-of-the-art visually-derived Wiener
filtering [10].

(b) Proposed enhanced visually-derived
Wiener filtering

Figure 6: State-of-the-art visually-derived Wiener filtering (a) and proposed
enhanced visually-derived Wiener filtering (b)

5 Dataset and Audio-Visual Feature Extraction
For AV encryption and speech enhancement, Grid [30] and ChiME3 [31] cor-
pora are used. The proposed system is evaluated under four different dynamic
real-world scenarios (cafe, street, public transport, pedestrian area). It is to be
noted that the utterances from all the scenarios were mixed to develop a contex-
tual AV speech enhancement framework. The visual only speech enhancement
significantly outperforms audio-only approaches at low signal-to-noise ratios
(SNRs). However, visual cues become less effective at high SNRs. Therefore, to
effectively account for different noisy conditions, a more optimal, context-aware
audio-visual system is required, that leverages the complementary strengths of
both visual and noisy audio cues contextually. For noisy utterances generation,
the clean videos from Grid corpus were mixed with ChiME3 noises for different
SNR levels ranging from -12 to 12dB. For preprocessing, sentence alignment
and prior visual frames were used to stop the model from learning redundant
information and improve mapping between visual and audio features (exploiting
their temporal information).

5.1 Audio-Visual feature extraction
For audio feature extraction, the input audio signal was sampled at 50kHz and
segmented into N 16ms frames with 800 samples per frame and 62.5% increment
rate. To produce 2048-bin power spectrum, a hamming window and Fourier
transformation was applied, followed by the logarithmic compression to produce
23-D log-FB signal. The visual features were extracted from the Grid Corpus
videos recorded at 25 fps. The video files were processed by extracting a sequence
of individual frames and applying a Viola-Jones lip detector [32] and object tracker
[33]. Furthermore, to ensure appropriate lip tracking, processed utterances were
manually validated. Finally, the 2D-Discrete Cosine Transformation (2D-DCT)
was applied to produce vectors of pixel intensities, followed by interpolation.
More details are presented in our previous work [17].
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