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Policy makers and managers sometimes assess the share of research produced by a group 
(country, department, institution). This takes the form of the percentage of publications in a 
journal, field or broad area that has been published by the group. This quantity is affected 
by essentially random influences that obscure underlying changes over time and differences 
between groups. A model of research production is needed to help identify whether 
differences between two shares indicate underlying differences. This article introduces a 
simple production model for indicators that report the share of the world’s output in a 
journal or subject category, assuming that every new article has the same probability to be 
authored by a given group. With this assumption, confidence limits can be calculated for the 
underlying production capability (i.e., probability to publish). The results of a time series 
analysis of national contributions to 36 large monodisciplinary journals 1996-2016 are 
broadly consistent with this hypothesis. Follow up tests of countries and institutions in 26 
Scopus subject categories support the conclusions but highlight the importance of ensuring 
consistent subject category coverage.  

1 Introduction 
Research assessment is an increasingly important activity, from individual researcher self-
evaluations (Wouters & Costas, 2012) to national merit-based exercises to allocate funding 
(e.g., Butler, 2008). For this, both the quantity and quality of outputs may be considered. 
For quantity, the number of outputs might be counted whereas peer review or citation-
based indicators may inform quality judgements. One of the attractions of the h-index is 
that it combines both, albeit in a controversial way (e.g., Costas & Bordons, 2007). The main 
approach seems to be to largely ignore quantity and focus on quality. In some national 
research evaluation exercises, there is a quantity threshold, such as four journal articles per 
scholar in six years, but evaluating quality alone (Franceschet & Costantini, 2011; Wilsdon, 
Allen, Belfiore, Campbell, Curry, et al., 2015). Nevertheless, quantity information is essential 
to give a rounded impression of the outputs of a set of researchers, from individual research 
groups to countries. Such statistics are often reported at the national level (Elsevier, 2013) 
but are rarely analysed in terms of underlying capacity. There is thus a need for a more 
theoretical analysis of research production, in the sense of the capacity to produce outputs, 
to help interpret the statistics reported. 

1.1 Research production indicators and applications 

Research production is usually equated with the number of publications produced of a given 
type or set of types, although it is sometimes analysed in a way that includes impact, 
efficiency or quality components (Abramo & D’Angelo, 2014). There have been previous 
attempts to statistically analyse research production to find its determinants. For individual 
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scientists, it has been shown to relate to incentives (Levin & Stephan, 1991), motivation 
(Taylor, Locke, Lee, & Gist, 1984), institutional environment (Dundar & Lewis, 1998), 
collaboration (Abramo, D’Angelo, & Di Costa, 2009), internet use (Barjak, 2006), academic 
rank (Abramo, D’Angelo, & Di Costa, 2011) and gender or other personal factors (Sax, 
Hagedorn, Arredondo, & Di Crisi, 2002). These studies have taken the statistical assumption 
that there are both systematic and uncontrolled factors but have not specified a basic 
research production model. Research productivity in the sense of efficiency has also been 
investigated by comparing outputs to inputs (Abramo, D’Angelo, & Pugini, 2008; Abramo, 
Costa, & D’Angelo, 2015). Production in the sense of the probability of an author to select a 
given journal has also been tested against Lotka’s law (Rowlands, 2005). From a distribution 
perspective, the number of publications from a set of research groups may follow a 
lognormal distribution (a visual observation based on Figure 1 of: van Raan, 2006), 
suggesting a degree of statistical regularity at the aggregate level, so that the existence of 
an underlying model is plausible. Despite all these studies and one model for individual 
researchers (Koski, Sandström, & Sandström, 2016) there does not seem to have been a 
previous attempt to use publication counts to model the underlying production of a group, 
in the sense of its capacity to produce research outputs. 
 Governments assessing national research performance often commission reports 
that analyse, amongst other factors, the national share of the world’s publications. A UK 
commissioned report, for example, includes shares of the world’s Scopus-indexed articles, 
citations and highly cited papers in addition to the same values per researcher and per unit 
research expenditure (Figure 1.1 of Elsevier, 2013), as well as diagrams showing changes 
over time in the relationship between article share and average impact (Figure 1.2 of 
Elsevier, 2013). A U.S. National Science Foundation report includes, amongst many other 
statistics, 50 countries’ shares of the world’s publications (Table 5-23 of NSF, 2016) and a 
graph showing changes in national shares of publications (Scopus-indexed books, 
conference papers and journal articles) over time (Figure 5-24 of NSF, 2016). An OECD 
report includes, amongst other figures, national shares of publications (Figure 1.2 of OECD & 
SCImago, 2016). This document also reports publications per million inhabitants. These 
reports assume that analysing publication share is meaningful as part of a set of indicators. 
Other national-level reports include total output indicators but no output share indicators, 
such as one for the European Commission (Science-Metrix, 2015). 
 Shares of publications have also been analysed at lower levels of aggregation. A 
report for the U.S. National Science Foundation analysed changes over time in the share of 
articles produced by different sectors of the economy (Figure 11 of Côté, Roberge, & 
Archambault, 2016). This report also compared absolute numbers of publications at the 
national level. Sector shares within the national output are also reported in the New 
Zealand research performance report (Ministry of Business, Innovation and Employment, 
2016). This report primarily compares New Zealand to similar countries rather than the rest 
of the world. 

1.2 The research production capability model 

This paper introduces a model of underlying production for a group of researchers that is 
based on their share of the world’s output. From the perspective of a small research group, 
a more natural model would be for the total number of articles published by them. Using 
share rather than volume is nevertheless appropriate because the number of outputs per 
researcher may alter over time in line with changes in technology and publishing 
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opportunities. For example, if a journal’s coverage doubled (or a Scopus subject category 
doubled in size) then it would not be reasonable to expect a group’s output to double in 
response. Nevertheless, if a journal doubles in size then unless it attracts new contributors 
for the expanded coverage (e.g., because its scope also expands) then the same 
contributors must fill its pages by contributing, on average, the same share as before the 
expansion. Expansions are likely to be triggered by a backlog due to increased demand or an 
attempt to take an increased share of articles from other similar journals. Thus, it seems 
reasonable to hypothesise that the probability of publishing in a journal is more 
fundamental than the number of articles published in that journal, or at least a reasonable 
alternative perspective. 

The same argument applies to entire subject areas to a lesser extent. If a subject 
area expands by some of its journals getting larger, then the same set of authors would 
presumably be expected to write the extra articles. Nevertheless, if a citation index 
increases its coverage of a subject area by adding new journals then, since academic 
journals can have a specialist audience that differs to some extent from all other journals, 
they are likely to bring at least a few new specialist authors with them. Thus, the share of 
the publications of the existing groups within subject categories seems likely to decline (e.g., 
see: Abramo, D'Angelo, & Di Costa, 2008). This will also occur of the citation index adds 
journals with a national focus, such as a set from China. The probability argument is 
therefore much weaker for subject areas unless they are pre-filtered for journal changes, 
except for periods in which their constituent journals are unchanged. 

At the system level, the amount of research published, or at least being indexed, is 
expanding. In Scopus, for example, the number of journal articles has increased rapidly since 
1943 (search for DOCTYPE(ar) and click Analyse search results). This is probably partly due to 
increases in the number active researchers, especially in countries like China, India and 
Brazil. Thus, most countries seem to almost continually increase their number of outputs 
and so increases are “normal”, complicating the task of detecting significant underlying 
changes based on volume alone.   

The model of production capability makes the simplifying assumption that at the 
start of the year, each article published in a journal or subject area within that year has the 
same (unknown) probability Π to be published by a specified group (e.g., department or 
country). With this assumption, the number of articles out of the total 𝑛 published in the 
journal at the end of the year follows the binomial distribution 𝐵(𝑛, Π). If a proportion 𝑝 of 
the articles in the subject or journal are published by the specified group, then 𝑝 is an 
estimator for Π and a 95% confidence interval can be calculated for Π using Wilson’s (1927) 
score interval. 

𝑝 +
1.962

2𝑛 ± 1.96√𝑝(1 − 𝑝)
𝑛 +

1.962

4𝑛2

1 + 1.962/𝑛
                                                 (1) 

The simplifying assumption above is not an intuitive way of thinking about research 
publishing and does not seem to have been suggested before. It is more intuitive to think in 
terms of random factors affecting the total number of publications produced by a group. 
Nevertheless, the above model fits naturally with indicators reporting publication share and 
is designed to give a simple way to help interpret their values. The result of the process is 
more intuitive: confidence limits for the share of publications produced by a group. 

The above probability relates to a consideration of the total number of publications 
produced by a group together with a system expansion assumption. Suppose that group 𝑔 
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produces 𝑛𝑔0 publications in year 0 out of 𝑁0 publications in a subject area or journal. 

Suppose that a few years later the system has expanded to 𝑁𝑖 publications due to greater 
ease of publishing, an increase in the number and size of journals or expanded coverage of 
the citation index used. If group g’s capacity to produce research has stayed the same, then 
the number of publications it produces in year 𝑖 might be expected to rise in line with the 
world to: 

𝑛𝑔𝑖 = 𝑛𝑔0
𝑁𝑖

𝑁0
      (2) 

Dividing both sides by 𝑁𝑖 gives: 
𝑛𝑔𝑖

𝑁𝑖
=

𝑛𝑔0

𝑁0
       (3) 

Thus, the unchanging factor is the proportion of the world’s publications produced, which is 
the value that the probability 𝑝 in the model of production capability is estimating. From the 
number of publications perspective, however, there is no need to assume that there is an 
underlying probability 𝑝, but the number produced could be modelled by any suitable 
discrete distribution. Of these, the production capability model is the simplest and therefor 
the logical first choice in the absence of evidence to the contrary. 
 Simplifying models have previously been used to explain empirical citation 
distributions (e.g., de Solla Price, 1976) and this strategy can support better understanding 
and more accurate, analyses, despite the simplifications being clearly incorrect on a small 
scale. For example, the Matthew effect, when turned into a mathematical model, assumes 
that the proximity of an article being cited by a new publication is approximately 
proportional to its existing citation count (de Solla Price, 1976; Merton, 1968), despite 
scientists never choosing papers to cite in this way (although citation counts can influence 
their choice). 

From a statistical perspective, the model of production capability turns populations 
into samples, making statistical inference possible. Without a theoretical perspective if a 
group publishes 2% of the articles in a year then this is a precise figure, rather than a sample 
from a larger population. If the group publishes 2.1% of the journal’s articles the following 
year, then there is no way to decide whether this increase is big enough to reflect an 
underlying change. With the model of production capability, the 2% can be used to estimate 
the underlying probability to publish in the journal (0.02 in this case) together with 
confidence intervals. These can be used to decide whether the subsequent year’s value 
(0.21) is different enough to suggest that the underlying probability to publish has changed. 
This is an example of the social science apparent populations strategy that regards complete 
data sets as samples from the set of theoretically possible outcomes from the environment 
(Berk, Western, & Weiss, 1995). 

From the perspective of those constructing research indicators, the production 
capability model is not intended to replace all other publication output indicators but is for 
when share-based indicators are employed, as in the examples given above (Elsevier, 2013; 
NSF, 2016; OECD & SCImago, 2016; Côté, Roberge, & Archambault, 2016). This is normally in 
conduction with related data, such as absolute numbers of publications. 

1.3 Prediction intervals 

Confidence intervals, such as (1), are useful to delimit the underlying probability to publish 
but it may also be useful to have a test to detect whether this probability is likely to have 
changed, based upon a second data set, such as results from a second year. Standard 
confidence intervals cannot be used for this since they delimit the underlying population 
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parameter rather than future sample proportions. It is therefore necessary to switch to 
prediction intervals, which give an interval for future sample proportions from the same 
population. The following formula is a 95% prediction interval for the number of 

publications 𝑌̂ (out of 𝑚) being published by a group in a subsequent year, if it published 𝑋 
out of 𝑛 in a previous year (joint distribution method, equation 12 in: Krishnamoorthy & 
Peng, 2011). 

(𝐿, 𝑈) =
𝑌̂ (1 −

1.962

𝑚 + 𝑛) +
1.962𝑚

2𝑛 ± 1.96√𝑌̂(𝑚 − 𝑌̂) (
1
𝑚 +

1
𝑛) +

1.962𝑚2

4𝑛2

1 +
1.962𝑚

𝑛(𝑀 + 𝑛)

      (4) 

This prediction interval is for the number of publications produced by the group in the 
second sample. L can be rounded up, with U rounded down to whole numbers. A prediction 
interval for the proportion of articles published by the group in the second time period is 
therefore: 

(𝐿/𝑚, 𝑈/𝑚)       (5) 
If the total number of publications produced by the world set (journal, category or 
Scopus/WoS database) is approximately constant then it would be reasonable to set 𝑚 = 𝑛 
so that the prediction intervals could be calculated in advance. 

1.4 Comparison with alternative strategies 

In comparison to efficiency models of research that consider the ratio of system outputs to 
system inputs (Abramo, D’Angelo, & Pugini, 2008; Abramo, Costa, & D’Angelo, 2015), the 
proposed model has the advantage that it requires only (currently) easily available data but 
the disadvantage that it delivers less useful information to the research manager. Another 
model focuses on the output per researcher, as reflected by a publication database. It takes 
into account that the most unproductive researchers are ignored in many bibliometric 
analyses because they have no database records, giving misleading national average papers-
per-researcher indicators (Koski, Sandström, & Sandström, 2016). This models a group as 
having both publishing and non-publishing researchers and uses a statistical distribution 
assumption to accommodate the missing data. This productivity (papers per researcher) 
approach is complementary to the production (share) approach of the current paper. 

There are other ways of dealing with uncertainty in bibliometric data. The most 
widely used at a practical level is probably common sense or expert judgement of the 
research manager considering multiple indicators with their own background knowledge of 
the local and world research context. This takes a theory-free approach, which has the 
drawback that different people may interpret the results in different ways and the decision 
making is not fully transparent. 

A variety of strategies have been proposed support or replace expert judgement. 
Funnel plots for universities are a graphic device to help managers to compare 
productivities by visually illustrating uncertainty (Abramo, D’Angelo, Grilli, 2016; Abramo, 
D’Angelo, Grilli, 2015). This approach has the advantage that it gives an overview of multiple 
institutions in a single graphic that combines indicator values and uncertainty information. 
This device uses traditional confidence intervals but could also use the confidence or 
prediction interval approach introduced here. A different tool, stability intervals, are like 
confidence intervals but deal with uncertainty in derived from the publication dataset used, 
employing bootstrapping (Waltman, Calero‐Medina, Kosten, et al., 2012). This is a less 
theoretical alternative to the current approach but its results are probably similar. 
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Finally, and related to the previous point, the use of statistical inference in 
scientometrics has been challenged, for example on the basis that there are many causes of 
randomness and that statistical inference (typically for citation indicators but many 
arguments also apply to publication indicators) is therefore rarely well founded (Waltman, 
2016). The new model attempts to reduce, but not eliminate, the ambiguity in the causes of 
randomness by proposing a simple model. 

2 Research questions 
It is impossible to directly check the model of production capability and so the research 
questions are pragmatic in the sense of assessing its results: the extent to which it gives 
plausible information. Journals are used to test the model to avoid the results being 
affected by changes in subject area coverage over time. The second research question 
addresses whether the results are likely to be affected by international collaboration, which 
complicates the issue of assessing production capability. The third and fourth research 
questions are more exploratory. They assess the two contexts in which the model may be 
applied in practice but for which it is difficult to produce long term robust tests. 

1. Do prediction intervals for the proportion of a country’s articles within a journal give 
plausible results in the sense of close to 95% of following year proportions falling 
within them and the proportion decaying for subsequent years? 

2. Are prediction intervals for the proportion of a country’s articles within a journal 
more stable if articles are considered with all authors from the country rather than 
with any author from the country? 

3. Do prediction intervals for the proportion of a country’s articles within a Scopus 
subject category give plausible results in the sense of close to 95% of following year 
proportions falling within them and the proportion decaying for subsequent years? 

4. Do prediction intervals for the proportion of an institution’s articles within a Scopus 
subject category give plausible results in the sense of close to 95% of following year 
proportions falling within them and the proportion decaying for subsequent years? 

3 Methods 

3.1 First research question: Journal-level analysis 

This paper recycles a set of 36 large monodisciplinary journals (Appendix A) from a previous 
study of citation prediction interval accuracy and uses a similar strategy, but on a different 
aspect of the data (publication counts rather than citation counts) and for different goals 
(production capability modelling rather than field normalised prediction interval accuracy 
validation) (Thelwall, in press). This set was formed by taking the 50 current journals in 
Scopus with the most refereed journal articles 1996 (to ensure long term large data sets) 
excluding non-scientific journals (e.g., Jane’s Defence Weekly) and general journals (e.g., 
Nature, Science, PLOS ONE) because these publish different subject areas. Journals that did 
not publish continuously 1996-2016 were also excluded. Large journals are important to 
give statistical power to the analysis and the long period was needed to assess differences 
over time. The data was gathered in February and March 2017 and so should be close to 
complete for all years. 
 The ten countries with the most articles in the combined set of 36 large 
monodisciplinary journals was assessed for the plausibility of prediction intervals for their 
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probability of authoring articles in each journal (RQ1). Countries were selected rather than 
research groups or institutions for increased statistical power and long term stability. 
Individual research groups sometimes have policy shifts that result in increased or 
decreased submissions to specific journal (e.g., Howard, Cole, & Maxwell, 1987), which 
would undermine the findings. 

A 95% prediction interval based on the underlying probability to author a paper in 
the journal was calculated for each country, journal and year except 2016 (n=36 x 10 x 
20=7200 prediction intervals) using (5) above. For each year except 1996, the proportion of 
articles with at least one author from a given country was also calculated (n=36 x 10 x 
20=7200 sample proportions). For each journal and country, all sample proportions were 
checked to see whether they occurred within the prediction intervals for each preceding 
year, recording this against the time lag between the prediction interval and subsequent 
year. For example, China published 8 out of 2201 articles in the Journal of the American 
Chemical Society in 1996, with a 95% prediction interval of (0.0018,0.0072). In 1997 (1-year 
gap), it published 11 out of 1957, which is 0.0056, within the 95% prediction interval. In 
contrast, in 2000 (4-year gap), it published 14 out of 1396 articles and the proportion 0.001 
falls outside the 1996 prediction interval. This last check was performed for all pairs of first 
and subsequent years except for the pairing 1996 and 2016 (20-year gap) because this gave 
a small sample size (n=36 tests in contrast to between n=72 and n=720) for the remaining 
year gaps). 

3.2 Second research question: National research 

The above steps were repeated for articles with all authors from each of the ten selected 
countries, excluding internationally collaborative research. For example, in the second test 
only articles with all authors from the USA were included. The basic data for this paper is 
therefore the outcomes of 150,480 tests for whether the proportion of articles in a year and 
journal falls within a 95% prediction interval for the same country and journal and a 
previous year. These tests were aggregated by country and year gap to reveal trends. 

3.3 Third research question: Scopus categories instead of journals 

For the third research question, a set of journal articles from 26 subject categories in Scopus 
from 1996 to 2015 was recycled from a previous citation analysis paper (Appendix B). These 
are the 7th categories within the Scopus broad categories. For example, Forestry was 
selected from the broad category Agricultural and Biological Sciences. Each subject category 
and year combination has a maximum of 10,000 journal articles, a system limitation. When 
there were more than 10000 articles, the first and last 5000 were included. This is likely to 
affect the results for the larger categories because, depending on annual differences in 
indexing, there may be journals with national specialisms that are less comprehensively 
included in the subject category in some years. The methods above for journal articles were 
replicated for this set of subject categories. 

3.4 Fourth research question: Institutions instead of countries 

For the final research question, the 26 subject categories in Scopus from 1996 to 2015 were 
reused at the level of institution, choosing universities from the THES ranking (THES, 2017) 
with ranks 1, 10, 20, 40, 80, 160 and 320 for a range of different institution levels. 

Tests were only conducted for pairs of years when there was at least one article 
published by the group in the first year to avoid a situation with many positive results by 
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default due to no publishing at all in the category. This mostly affected the data for the 
fourth research question. 

Appendix C contains instructions for the above with the free software Webometric 
Analyst. 

4 Results and discussion 
The first two research questions are grouped together in the results, investigating the 
frequency with which publication shares for a country in a journal fall within 95% prediction 
intervals from previous years. 

4.1 Journals 

After a one year gap, between 75% (China) and 92% (Canada) of the proportions of 
publications in a journal from a country fall within a 95% prediction interval calculated from 
the previous year (Figure 1, 2: 1-year gap). If the statistical model is true and the underlying 
probability of publishing each article in each journal did not change in a 1 year period then 
the percentage of sample proportions from the second year falling within 95% confidence 
intervals from the first year would be close to 95%. Thus, figures substantially above 95% in 
the graph would suggest a violation of the model and less variability than would be 
predicted by it. Since the figures are below or substantially below 95%, they are consistent 
with the model, although the size of the gap below 95% in Figures 1 and 2 is probably due to 
changes in the underlying probability at some or all points in time during 1996-2016 for all 
countries and journals. 
 To set the results in context, if the data in Figures 1 and 2 had been substantially 
above 95% at any point then this would have shown that the underlying assumptions were 
implausible (but, as discussed below, this does not apply to small sample sizes and low 
probabilities). Conversely, much lower figures, perhaps under 50% for a gap of 1, would 
suggest that the prediction intervals were not useful.  

As the time gap between the first year (prediction interval) and second year 
(proportion tested) increases, the percentages fall steadily to below 70% for all countries 
(Figures 1, 2). The falling proportion as the gap increases is broadly consistent with the 
statistical model on the basis that country proportions often experience trends and larger 
gaps therefore associate with a smaller proportion falling within a prediction interval 
calculated from the start of the gap. 
 

 
Figure 1. The percentages of times that the proportion of articles published by a country 
within a journal falls within 95% prediction intervals from previous years, against the gap 
between the two years. Data for each country is for articles with any author from that 
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country. There are 720 journal/year pairs for a 1 year gap falling linearly to 72 journal/year 
pairs for a 19-year gap. The raw data comprises n=75,240 individual tests.  
 

 
Figure 2. As Figure 1 except that the data for each country is for articles with all authors 
from that country. 
 
In answer to the second research question (Figure 3), for some countries, prediction 
intervals are more likely to contain subsequent proportions if articles with any author from 
the country is considered (e.g., USA) and for others the opposite is true (e.g., South Korea). 
Nevertheless, the difference is not large for the shortest gaps.  
 

 
Figure 3. Figure 2 subtract Figure 1. The height of the line is the extent to which prediction 
intervals for articles with any authors from the stated country are more likely to contain 
subsequent proportions than prediction intervals for articles with only authors from the 
country. 
 
Within the broad findings, the trends for individual countries vary. Considering Journal of 
the American Chemical Society, for example, the proportion of articles with authors from 
China increased almost every year from 1996 to 2016 (Figure 4). The years with small 
increases or decreases are consistent with this trend, as can be seen from the prediction 
intervals: A smooth monotone increasing line could be drawn on the graph through all of 
them. Thus, policymakers should not be concerned about the deviations from the overall 
monotone increase because these could be due to natural random variations. 
 In the opposite trend direction, the USA’s share of Journal of the American Chemical 
Society articles decreased steadily over time 1996-2016 (Figure 5) and even the largest 
deviation from this, the increase in 1999, is consistent with no underlying growth because it 
is possible to draw a monotone decreasing line through all the prediction intervals. Thus, 
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whilst something unusual might have happened in 1998 (e.g., a large special issue with a 
topic of interest mainly outside the USA) or 1999, this is not a necessary conclusion from the 
data. 
 A different case is India, with a much lower proportion of Journal of the American 
Chemical Society articles (Figure 6). The prediction intervals are relatively large for India 
compared to the line height, as can be seen by comparing Figures 4-7. The larger line 
fluctuations match the wider prediction intervals. 
 Canada (Figure 7) is the most stable country overall in the main data (the highest line 
in Figures 1,2). This is reflected in a reasonably constant share of publications, albeit with a 
gradual decrease until 2013, followed by a sharper decrease. For Figures 4-7, when a point 
does not lie within a prior prediction interval then there is evidence of an underlying change 
in the sense that a hypothesis test at the 95% level would reject the null hypothesis that the 
two proportions were from populations with the same underlying (i.e., population) 
probability to author each article in the journal (this is different from how confidence 
interval overlaps should be interpreted). A combination of this information and the trend 
gives strong evidence that there has been a long term decrease in the Canadian probability 
to publish in the Journal of the American Chemical Society. 
 

 
Figure 4. Prediction intervals for the probability (expressed as a percentage) that each 
article in Journal of the American Chemical Society has at least one author from China. Each 
prediction interval assumes that the overall number of articles in the journal does not 
change over time. 
 

 
Figure 5. As Figure 4 for the USA. 
 



11 
 

 
Figure 6. As Figure 4 for India. 
 

 
Figure 7. As Figure 4 for Canada. 

4.2 Subject categories 

The percentages of times that the proportion of articles published by a country within a 
subject category falls within 95% prediction intervals from previous years (Figure 8, 9) are 
much lower than the corresponding percentages for individual journals (Figure 1, 2). There 
may be more substantial increasing or decreasing trends for country shares within subject 
categories than within individual journals caused by annual changes in the coverage of 
Scopus through adding, subtracting or re-classifying one or more nationally-focused 
journals. For example, Scopus had indexed 645,268 documents within journals containing 
“Chinese” in their title on 27 September 2017. For every article with a U.S. affiliation there 
were 41 affiliated with China. In contrast, Scopus had indexed 2,361,522 documents within 
journals containing “American” in their title on 27 September 2017. For every article with a 
China affiliation there were 42 from the U.S.A., confirming huge international biases in 
journals. Adding or removing such nationally biased journals to a category would affect 
statistics for all countries except any that contributed a similar share to their contribution to 
the remainder of the category. 

China has the lowest line in Figure 8, which is partly due to increasing national 
research output and increasing coverage of Chinese journals. As Scopus has become more 
international, indexing increasingly many non-English periodicals (e.g., Spanish, Chinese), it 
has become less dominated by the English language journals that are the predominant 
publishing outlet of the UK, USA and Canada, decreasing their overall shares. Another 
contributory factor is that prediction intervals for categories will be narrower than 
prediction intervals for journals due to larger data sets. In consequence, small changes are 
more likely to result in values outside of the narrower prediction limits. 
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Figure 8. As Figure 1 except for 26 Scopus subject categories. There are 454-493 
subject/year pairs for a 1 year gap falling linearly to 20-25 subject/year pairs for a 19-year 
gap. The raw data comprises n=47,067 individual tests. 
 

 
Figure 9. As Figure 8 except that the data for each country is for articles with all authors 
from that country. 
 
Trends in the first category, Forestry, illustrate some key issues (Figures 10-13). The Scopus 
Forestry data is complete in all years, with the largest number of articles being 8016, from 
2015 (i.e., below the threshold of 10,000 that causes data loss). For both Canada and the 
USA, there is a strong downward trend which accounts for the relatively low percentage of 
proportions from one year falling within 95% prediction intervals for the previous year. 

There was a jump in 2006 for China, which is due to Scopus starting to index 
Frontiers of Forestry in China in this year. The decrease in 2011 was mainly due to the 
Scopus decision to cease indexing Plant Physiology Communications, which is published in 
China (http://www.oriprobe.com/journals/zwslxtx.html) and had 158 solely Chinese-
authored articles in 2010. 

For India, there was a sharp increase in share of Forestry in 2008, the year when 
Scopus started to index Journal of Agrometeorology. This international journal is published 
by the Association of Agrometeorologists, which formed in Gujerat, India 
(http://agrimetassociation.org/Default.aspx) and started publishing the journal in 1999 
(http://agrimetassociation.org/Journal.aspx). When first indexed by Scopus in 2008, 128 out 
of the 151 articles had exclusively Indian authors. This more than doubled the 58 Indian-
authored articles in the remaining Forestry journals combined. The sharp jump in Figure 12 
is therefore entirely due to a Scopus indexing decision. 
 

http://agrimetassociation.org/Default.aspx
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Figure 10. Prediction intervals for the probability (expressed as a percentage) that each 
article in the Forestry Scopus category have all authors from China. Each prediction interval 
assumes that the overall number of articles in the journal does not change over time. 
 

 
Figure 11. As Figure 10 for the USA. 
 

 
Figure 12. As Figure 10 for India. 
 

 
Figure 13. As Figure 10 for Canada. 

4.3 Institutions 

The percentages of times that the proportion of articles published by an institution within a 
subject category falls within 95% prediction intervals from previous years (Figure 14, 15) are 
higher than the corresponding percentages for entire countries (Figure 8, 9) and for 
individual journals (Figure 1, 2). 

The higher values (heights of lines in Figure 14, 15) compared countries for the same 
set of subject categories (Figure 8, 9) is counterintuitive because departments (or at least 
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institution/subject combinations) seem to be inherently less stable than national output in a 
field (i.e., country/subject combinations). The increased stability is due to the proportions 
calculated being much smaller for institutions than for countries. Low numbers of 
publications in a category occur when an institution does not have a department specialising 
in the research area. With only a few articles expected each year, underlying trends are 
harder to detect because of the discrete nature of the data. For example, the expected 
whole number of publications to be published by an institution in each year may not change 
in response to a small change in the underlying production capability. 

The percentages are implausibly close to 95% and above 95% for some countries and 
especially for short gaps in Figure 14 and 15. This is because the confidence intervals are 
necessarily conservative. For continuous data, confidence or prediction intervals can be 
exact but for discrete data they tend to be conservative. For example, if the prediction is the 
range 1-3 publications for a 95% prediction interval then this might give 99% confidence 
because any narrower range (e.g., 1-2 or 2-3) might give a confidence below 95%. Whilst 
this issue applies to all discrete data, it is largest for low numbers, as for the institution data 
here. 

 
Figure 14. As Figure 8 except for seven varied ranking institutions. 
 

 
Figure 15. As Figure 14 except that the data for each university is for articles with all authors 
from that institution.  
 
As an example of an institution/subject combination with relatively many publications, 
Pharmaceutical Science in KU Leuven (Figure 16) shows three spikes that fall outside of the 
prediction limits. The 1998 anomaly was due to 28 articles in Journal de Pharmacie de 
Belgique from 1998 in comparison to 3 the year before. This journal has been indexed in 
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Scopus since 1949 with a maximum of 56 articles per year in all years except 1998, when it 
included 348. Some seemed to be research-based news instead of primary research (e.g., 
“Bioanalytical support in first-dosing-in-man studies”). The extra papers were from the Drug 
Analysis ’98 Symposium, Brussels, Belgium, May 1998, which the journal chose to publish. 
The 2008 and 2014 spikes were caused by increases in Bioorganic and Medicinal Chemistry 
that cannot be accounted for by Scopus’ coverage of the journal. In 2008 all except one of 
the articles had Erik De Clercq as an author or co-author. According to Scopus, 2008 was a 
below average year for production for De Clercq, so his (or his team’s) publications in 
Bioorganic and Medicinal Chemistry may represent a temporary shift in focus (in 2008 he 
received a prestigious lifetime achievement award for “Contributions to antiviral therapy”, 
http://www.epo.org/learning-events/european-inventor/finalists/2008.html). In 2014, most 
KU Leuven Bioorganic and Medicinal Chemistry articles were co-authored by Jan Balzarini, 
and 2014 was an above average production year for him (66 Scopus-indexed documents in 
comparison to 57 in 2013). The data set was also incomplete for 2014 (due to reaching the 
maximum of 10000 articles in the year and subject category) so both may be partial factors. 

Representing an institution/subject combination with little data, Health, Toxicology 
and Mutagenesis in the University of Zaragoza (Figure 17) has one or two articles in most 
years and the prediction intervals suggest that the erratic pattern may be due to random 
variations rather than underlying trends. 
 

 
Figure 16. Prediction intervals for the probability (expressed as a percentage) that each 
article in the Pharmaceutical Science Scopus category have all authors from KU Leuven. 
 

 
Figure 17. Prediction intervals for the probability (expressed as a percentage) that each 
article in the Health, Toxicology and Mutagenesis Scopus category have all authors from the 
University of Zaragoza. 

5 Limitations 
The results are limited through being tested primarily on large monodisciplinary journals, 
which are exclusively from the natural sciences and medicine, with a bias towards medicine 

http://www.epo.org/learning-events/european-inventor/finalists/2008.html
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and physics. The conclusions should therefore be interpreted as speculative when applied to 
the social sciences, arts and humanities. The primary results are also restricted by being 
applied to journals rather than subject categories, which are the more natural unit of 
assessment for practical research evaluations and theoretical investigations of science (e.g., 
Falagas, Karavasiou, & Bliziotis, 2006; Vergidis, Karavasiou, Paraschakis, Bliziotis, & Falagas, 
2005). The decision to use only journals for the primary analysis was due to the variability in 
coverage of subject categories, which would give less clear results. Thus, the evidence here 
is for the plausibility of the prediction intervals based upon the theoretical discussion and 
the empirical evidence but, as in almost all kinds of mathematical modelling, it should not 
be taken as proving that the model is “correct”. 

The results for subject categories are limited by the inclusion of a restricted range 
and the methodological decision to include the entire Scopus subject category in each case, 
allowing non-systematic sources of variation from changes in the journals indexed by 
Scopus. In practice, an assessment of changes over time would need to ensure that the 
same journals are used throughout the period and that the subject area being analysed is 
covered comprehensively. Taking this extra variability into account, the country-level 
subject results are broadly consistent with the research hypotheses. 

The results for seven institutions may not apply to much smaller institutions or those 
with much lower research production. These are also limited by the set of subject categories 
chosen.  

6 Conclusions 
The arguments and empirical evidence suggest that it is very broadly reasonable to use 
prediction intervals to estimate the likely number of future outputs for a set of researchers, 
whether a country, institution or department, from the number of articles published in a 
journal or subject area, although only countries and large monodisciplinary journals were 
included in the primary analysis. It is also broadly reasonable to use confidence intervals to 
estimate the underlying production capability of a set of researchers. This is because the 
prediction intervals tested above are based on the same assumptions as confidence 
intervals, but generate wider intervals to account for the random variance in the 
publications from the second year. Prediction or confidence intervals could be used by 
research managers and policy makers monitoring the progress of a group of researchers and 
wishing to know whether underlying research capacity has expanded, contracted or stayed 
the same relative to world capacity, irrespective of the number of articles published each 
year. This should be used in conjunction with other output indicators (e.g., absolute output, 
publication efficiency) as well as impact or quality based assessments to give a 
multidimensional understanding of changes over time. Managers may decide that it is more 
appropriate to compare against a specific set of other researchers (e.g., a set of 
economically comparable countries rather than the rest of the world) and for this could 
discard other publications before starting the analysis. 
 An important caveat to the above is that strong conclusions should not be drawn 
about statistical evidence from the production capability model. This is because its 
assumptions are a simplification of the situation in practice and in any case all aspects of the 
world science system are continually changing. Thus, statistical evidence should be perhaps 
interpreted as permission to consider the possibility that there has been a change in the 
group analysed, or a difference between the two groups compared, but not proof of this. It 
cannot be proof because of the influence of system-level changes that the model does not 
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consider, such as disproportionate expansion in the coverage of a country’s journals by the 
citation index used. In this context, analysts may wish to consider whether the extra 
information given by prediction intervals outweighs the confusion that may be created by 
the additional complexity of the information presented for the managers that will read their 
report. 
 If considering a range of indicators (e.g., publication proportions for a set of broad 
fields) then prediction limits could be used from the opposite perspective from above: to 
give policy makers permission to ignore differences that are not statistically significant. Their 
task would then be to analyse the statistically significant differences qualitatively to assess 
whether the differences were (a) large enough to be important and (b) likely to be caused 
by factors under their control rather than database coverage or competitor changes. This 
system is not fool proof because there might be substantial changes that are not flagged as 
statistically significant because they are masked by database coverage changes but it would 
at least be a simple and transparent method to narrow down the number of likely important 
differences.  
 Confidence or prediction intervals will be unhelpful in situations where research 
managers know that the system has changed during the time interval examined. For 
example, if a country closes or opens several new universities or a research group expands 
or contracts substantially then the confidence or prediction intervals will tell the manager 
nothing because the system assessed is already known to have changed. Thus, confidence 
or prediction intervals are most useful in situations where the size of a system is reasonably 
static. For example, in a static system, confidence or prediction intervals may help 
governments to decide whether policy changes (e.g., reorganising the funding system) have 
influenced research output relative to the world norms, if other system changes are minor. 
 Although the experiments have focused on temporal changes, confidence or 
prediction intervals can also be used to compare different groups of researchers at the same 
point in time, if both are covered equally by the academic database used. Such comparisons 
are much more difficult than quality or impact comparisons because research groups, 
institutions and countries rarely have the same sizes as each other. Moreover, it is often 
difficult to size normalise groups (e.g., dividing publications by faculty: Toutkoushian, Porter, 
Danielson, & Hollis, 2003) because this requires accurate and comparable data about 
personnel and perhaps also funding for a fair comparison. 
 As a concrete example about how confidence or prediction intervals may be used in 
practice, suppose that a government changes its method of allocating research funding but 
not the amount of funding and wishes to know whether research output increased as a 
result (it could test this before testing for changes in citation impact). Since publishing 
volume increases annually, the total number of papers produced is likely to have increased, 
irrespective of whether the policy had been successful. A reasonable strategy would be to 
plot a graph of share of the world’s research over time, together with error bars denoting 
confidence or prediction limits, as calculated above. This graph would help to show whether 
there was statistical evidence of an underlying change in world share after the policy 
change. Alternatively, the government might consider only comparable nations and plot 
instead a graph of share of publications relative to this set. This would remove global 
influences, such as the rise of China, that might be irrelevant. 
 Although the confidence or prediction intervals and theoretical model are designed 
for shares of the world’s output, they can also be applied to absolute numbers of 
publications by multiplying each year’s values (proportion and both confidence or prediction 
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limits) by the world total number of publications in that year. The underlying logic of the 
research production capability model would still apply but the figures would also reflect the 
expansion in publishing (and indexing in citation databases). This would have the advantage 
of being more intuitive but may tend to give a more optimistic message than the data 
warrants, given that publishing expansion is normal. 

Finally, if confidence intervals are calculated using Wilson’s score interval then they 
should be interpreted with the understanding that they are for the underlying probability to 
publish in a journal or subject rather than being a prediction about the likely range of future 
proportions, if there has been no underlying change. Thus, 95% confidence intervals should 
not therefore be interpreted as predictions for the following year’s empirical value, in the 
absence of change. It would be reasonable to interpret them as 95% confidence intervals 
the future year’s underlying probability in the absence of change but not of the future year’s 
empirical value. In the absence of change, future year empirical values could be expected to 
fall within 95% confidence intervals less than 95% of the time, with the exact percentage 
depending on the sample size and variability: prediction intervals are better for this case. 
For applications to subject categories, care should be taken to ensure that the set of 
journals is consistent between the years assessed to avoid spurious findings. 
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Appendix A: Journal list 
Applied Mathematics & Computation; Applied Physics Letters; Applied Surface Science; 
Astronomy & Astrophysics; Astrophysical Journal; Biochemical & Biophysical Res. Comm.; 
Biochemistry; Bioorganic & Medicinal Chemistry Lett.; Brain Research; Cancer Research; 
Chemical Physics Letters; Geophysical Research Letters; Inorganic Chemistry; J. of 
Agricultural & Food Chemistry; J. of Applied Physics; J. of Applied Polymer Science; J. of 
Biological Chemistry; J. of Chemical Physics; J. of Immunology; J. of Neuroscience; J. of 
Organic Chemistry; J. of Power Sources; J. of the American Chemical Society; J. of Virology; 
Japanese J. of Applied Physics Part 1; Langmuir; Macromolecules; Materials Science & Eng. 
A; Monthly Not. R. Astronomical Soc.; Nuclear Instruments & Meth. Physics A; Physica B 
Condensed Matter; Physical Review A.; Physical Review Letters; Tetrahedron; Tetrahedron 
Letters; Thin Solid Films. 

Appendix B: Category list 
Forestry; History and Philosophy of Science; Cell Biology; Organizational Behavior and 
Human Resource Management; Fluid Flow and Transfer Processes; Spectroscopy; Computer 
Vision and Pattern Recognition; Statistics Probability and Uncertainty; Geology; Finance; 
Fuel Technology; Control and Systems Engineering; Health, Toxicology and Mutagenesis; 
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Applied Microbiology and Biotechnology; Polymers and Plastics; Discrete Mathematics and 
Combinatorics; Dermatology; Transplantation; Endocrine and Autonomic Systems; 
Emergency Nursing; Pharmaceutical Science; Atomic and Molecular Physics and Optics; 
Social Psychology; Human Factors and Ergonomics; Small Animals; Medical Laboratory 
Technology 

Appendix C: Analysis steps 
1. Get raw publication data: tab-delimited plain text file of publications with one 

column containing country affiliations of authors (e.g., from Scopus). One file per 
journal or subject category, containing all years. 

2. Split the data by year so that there is a separate file for each publication year. File 
names must have no spaces then end in [space][year]-world.txt. E.g., 0003-6951 
2000-world.txt. With Webometric Analyst, this requires Tab-sep|Split file into 
multiple parts based on Column n. Select enter the number of the column containing 
the year and, if the data is in year-month-day format, also specify hyphen – as the 
text to ignore from. To rename all files by adding -world at the end, use Webometric 
Analyst File|Rename all files in folder (including path) by replacing one string with 
another. 

3. Create a second file with at least one author from the given country, naming these 
files as above but with -Any[countryname].txt at the end. E.g., 0002-7863 2011-
world-AnyCanada.txt. In Webometric Analyst, use Citations|Copy Scopus records 
when one or all authors are from a given country. Enter the name of the country in 
the same format used in the text file. Specify at least one or all authors. 

4. Make reports (not needed) and AllData files with Reports|Calculate MNLCS, gMNCS 
and EMNPC (NPC) for a set of any tab-delimited files (one or more files, each 
processed separately). 

5. Rename the AllData files to [Any|Only][countryname] AllData.txt. e.g., AnyIndia 
AllData.txt or OnlyUK AllData.txt. 

6. Move the renamed AllData files to a single folder. 
7. Create the confidence intervals using Citation|Test confidence interval in publication 

time series in multiple AllData files with year at end of filename. 

 


